survey of numerical stability issues in convergence
play

Survey of Numerical Stability Issues in Convergence Acceleration - PowerPoint PPT Presentation

Survey of Numerical Stability Issues in Convergence Acceleration AVRAM SIDI Computer Science Department TechnionIsrael Institute of Technology Haifa, ISRAEL 1 Introduction Notation: { A m } ; A limit or antilimit of { A m } . { A ( j ) n


  1. Survey of Numerical Stability Issues in Convergence Acceleration AVRAM SIDI Computer Science Department Technion–Israel Institute of Technology Haifa, ISRAEL 1

  2. Introduction Notation: { A m } ; A limit or antilimit of { A m } . { A ( j ) n } : Obtained by applying an extrapolation method to { A m } . When computed numerically (i.e., in floating-point arithmetic), the A i and hence the A ( j ) are in error. This may cause numerical instabilities, which eventually n may destroy the accuracy of the computed A ( j ) completely. n For almost all methods, K n K n A ( j ) γ ( j ) γ ( j ) � � = ni A j + i ; ni = 1 . n i =0 i =0 The γ ( j ) ni are functions of the ∆ A i . γ ( j ) = γ ( j ) ni + δ ( j ) If ¯ A i = A i + ǫ i , ¯ are the computed quantities, then the ni ni computed A ( j ) is n K n A ( j ) γ ( j ) ¯ ¯ � = ¯ A j + i . n ni i =0 2

  3. Then K n K n A ( j ) − A | ≤ | A ( j ) | γ ( j ) | δ ( j ) | ¯ ni || ¯ � � − A | + ni || ǫ j + i | + A j + i | . n n i =0 i =0 If | ǫ i | = | A i || ρ i | and | δ ( j ) ni | = | γ ( j ) ni || η ( j ) ni | , where | ρ i | , | η ( j ) ni | ≤ u , then � K n K n � A ( j ) − A | ≤ | A ( j ) | γ ( j ) | γ ( j ) | ¯ � � ni || ¯ − A | + u ni || A j + i | + A j + i | . n n i =0 i =0 A i | = u | A i | + O ( u 2 ) , we have By A i ≈ ¯ A i and u | ¯ K n A ( j ) − A | � | A ( j ) | γ ( j ) | ¯ � − A | + 2 u ni || A j + i | . n n i =0 In case { A m } converges, A i ≈ A for all large i . Therefore, K n A ( j ) − A | � | A ( j ) | γ ( j ) | ¯ � − A | + 2 u | A | ni | . n n i =0 A ( j ) � | A ( j ) K n | ¯ − A | − A | n n | γ ( j ) � + 2 u ni | . | A | | A | i =0 3

  4. Now, the theoretical relative error | A ( j ) − A | / | A | → 0 as j → ∞ or n → ∞ . n Consequently, for all large j or n , A ( j ) K n | ¯ − A | n | γ ( j ) � � 2 u ni | . | A | i =0 Thus, the quantity K n Γ ( j ) | γ ( j ) � = ni | ≥ 1 n i =0 plays a very important role when applying extrapolation methods in floating- point arithmetic. In case Γ ( j ) is of order 10 p and u is of order 10 − s , at most n A ( j ) s − p decimal digits of ¯ can be trusted. n Note: u is of order 10 − 16 for double precision, and of order 10 − 35 for quadru- A ( j ) ple precision. Therefore, better accuracy can be obtained from ¯ by in- n creasing the precision of the floating-point arithmetic, provided the A i are also computed in this arithmetic. We want sup j Γ ( j ) or sup n Γ ( j ) to be finite and small. In case Γ ( j ) is un- n n n bounded in j or n , we want to be able to force it to grow as slowly as possible. 4

  5. Example. Levin u transformation Defined via the linear system n − 1 β i A l = A ( j ) � + ( l + 1)∆ A l ( l + 1) i , j ≤ l ≤ j + n. n i =0 Thus, i =0 ( − 1) i � n � � n ( j + i + 1) n − 2 ( A j + i /a j + i ) A ( j ) i = ; a i = A i − A i − 1 . n � n � � n i =0 ( − 1) i ( j + i + 1) n − 2 (1 /a j + i ) i ( − 1) i � n � ( j + i + 1) n − 2 (1 /a j + i ) γ ( j ) i ni = , i = 0 , 1 , . . . , n. � n � � n r =0 ( − 1) r ( j + r + 1) n − 2 (1 /a j + r ) r Best results are obtained from { A ( j ) n } ∞ n =0 with j fixed (such as j = 0 ). 5

  6. Example. u transformation on A n = � n i =1 1 /i 2 , n = 1 , 2 , . . . , lim n →∞ A n = π 2 / 6 . E (0) E (0) Γ (0) ¯ ¯ n n (d) n (q) n 0 3 . 92 D − 01 3 . 92 D − 01 1 . 00 D + 00 2 1 . 21 D − 02 1 . 21 D − 02 9 . 00 D + 00 4 1 . 90 D − 05 1 . 90 D − 05 9 . 17 D + 01 6 6 . 80 D − 07 6 . 80 D − 07 1 . 01 D + 03 8 1 . 56 D − 08 1 . 56 D − 08 1 . 15 D + 04 10 1 . 85 D − 10 1 . 83 D − 10 1 . 35 D + 05 12 1 . 09 D − 11 6 . 38 D − 13 1 . 60 D + 06 14 2 . 11 D − 10 2 . 38 D − 14 1 . 92 D + 07 16 7 . 99 D − 09 6 . 18 D − 16 2 . 33 D + 08 18 6 . 10 D − 08 7 . 78 D − 18 2 . 85 D + 09 20 1 . 06 D − 07 3 . 05 D − 20 3 . 50 D + 10 22 1 . 24 D − 05 1 . 03 D − 21 4 . 31 D + 11 24 3 . 10 D − 04 1 . 62 D − 22 5 . 33 D + 12 26 3 . 54 D − 03 4 . 33 D − 21 6 . 62 D + 13 28 1 . 80 D − 02 5 . 44 D − 20 8 . 24 D + 14 30 1 . 15 D − 01 4 . 74 D − 19 1 . 03 D + 16 E (0) A (0) ¯ (d) : relative error in ¯ in double precision. ( ≈ 16 decimal digits) n n E (0) A (0) ¯ (q) : relative error in ¯ in quadruple precision. ( ≈ 35 decimal digits) n n 6

  7. Improving stability Example. Levin–Sidi d (1) transformation Defined via the linear system, with 1 ≤ R 0 < R 1 < R 2 < · · · , n − 1 β i A R l = A ( j ) � + R l a R l , j ≤ l ≤ j + n ; a i = A i − A i − 1 . n R i i =0 l The A ( j ) and Γ ( j ) can be computed via the W algorithm: n n A Rj M ( j ) R j a Rj , N ( j ) R j a Rj , H ( j ) = ( − 1) j | N ( j ) 1 = = | , j ≥ 0 . 0 0 0 0 For n = 1 , 2 , . . . do M ( j +1) − M ( j ) N ( j +1) − N ( j ) H ( j +1) − H ( j ) M ( j ) , N ( j ) , H ( j ) n − 1 n − 1 n − 1 n − 1 n − 1 n − 1 = = = , j ≥ 0 . n n n R − 1 j + n − R − 1 R − 1 j + n − R − 1 R − 1 j + n − R − 1 j j j � � = M ( j ) H ( j ) A ( j ) , Γ ( j ) � � n n = � , j ≥ 0 . � � n n N ( j ) N ( j ) � � n n � end do Best results are obtained from { A ( j ) n } ∞ n =0 with j fixed (such as j = 0 ). 7

  8. Example: Logarithmic convergence d (1) transformation on A n = � n i =1 1 /i 2 , n = 1 , 2 , . . . , lim n →∞ A n = π 2 / 6 . R 0 = 1 , R l = max { R l − 1 + 1 , ⌊ σR l − 1 ⌋} , with σ = 1 . 3 (GPS). E (0) E (0) Γ (0) ¯ ¯ n R n n (d) n (q) n 0 1 3 . 92 D − 01 3 . 92 D − 01 1 . 00 D + 00 2 3 1 . 21 D − 02 1 . 21 D − 02 9 . 00 D + 00 4 5 1 . 90 D − 05 1 . 90 D − 05 9 . 17 D + 01 6 7 6 . 80 D − 07 6 . 80 D − 07 1 . 01 D + 03 8 11 1 . 14 D − 08 1 . 14 D − 08 3 . 04 D + 03 10 18 6 . 58 D − 11 6 . 59 D − 11 3 . 75 D + 03 12 29 1 . 58 D − 13 1 . 20 D − 13 3 . 36 D + 03 14 48 1 . 55 D − 15 4 . 05 D − 17 3 . 24 D + 03 16 80 7 . 11 D − 15 2 . 35 D − 19 2 . 76 D + 03 18 135 5 . 46 D − 14 1 . 43 D − 22 2 . 32 D + 03 20 227 8 . 22 D − 14 2 . 80 D − 26 2 . 09 D + 03 22 383 1 . 91 D − 13 2 . 02 D − 30 1 . 97 D + 03 24 646 1 . 00 D − 13 4 . 43 D − 32 1 . 90 D + 03 26 1090 4 . 21 D − 14 7 . 24 D − 32 1 . 86 D + 03 28 1842 6 . 07 D − 14 3 . 27 D − 31 1 . 82 D + 03 30 3112 1 . 24 D − 13 2 . 52 D − 31 1 . 79 D + 03 E (0) A (0) ¯ (d) : relative error in ¯ in double precision. ( ≈ 16 decimal digits) n n E (0) A (0) ¯ (q) : relative error in ¯ in quadruple precision. ( ≈ 35 decimal digits) n n 8

  9. Example: Linear convergence u and d (1) transformations on A n = � n i =1 z i − 1 /i , n = 1 , 2 , . . . , lim n →∞ A n = − log(1 − z ) /z ≡ f ( z ) ; z = 0 . 95 . R l = κ ( l + 1) , with κ > 0 integer (APS). ( κ = 1 gives the u transformation.) E (0) Γ (0) E (0) Γ (0) ¯ ¯ n n ( κ = 1) n ( κ = 1) n ( κ = 10) n ( κ = 10) 0 6 . 83 D − 01 1 . 00 D + 00 1 . 72 D − 01 1 . 00 D + 00 4 1 . 70 D − 01 3 . 92 D + 02 1 . 09 D − 04 1 . 49 D + 01 8 9 . 65 D − 03 1 . 64 D + 04 2 . 36 D − 08 9 . 92 D + 01 12 6 . 69 D − 04 7 . 86 D + 05 5 . 45 D − 12 6 . 71 D + 02 16 4 . 88 D − 05 3 . 87 D + 07 1 . 28 D − 15 4 . 55 D + 03 20 3 . 63 D − 06 1 . 93 D + 09 3 . 04 D − 19 3 . 09 D + 04 24 2 . 73 D − 07 9 . 66 D + 10 7 . 24 D − 23 2 . 10 D + 05 28 2 . 06 D − 08 4 . 85 D + 12 1 . 73 D − 26 1 . 43 D + 06 32 1 . 56 D − 09 2 . 44 D + 14 1 . 92 D − 28 9 . 73 D + 06 36 1 . 19 D − 10 1 . 23 D + 16 3 . 97 D − 27 6 . 62 D + 07 40 9 . 02 D − 12 6 . 17 D + 17 1 . 34 D − 26 4 . 51 D + 08 44 6 . 87 D − 13 3 . 11 D + 19 3 . 30 D − 26 3 . 07 D + 09 48 4 . 47 D − 14 1 . 57 D + 21 3 . 05 D − 25 2 . 09 D + 10 52 1 . 45 D − 12 7 . 89 D + 22 5 . 19 D − 25 1 . 42 D + 11 56 1 . 45 D − 11 3 . 98 D + 24 2 . 43 D − 23 9 . 67 D + 11 60 1 . 75 D − 09 2 . 01 D + 26 1 . 39 D − 22 6 . 58 D + 12 E (0) A (0) A ( j ) n : the computed A ( j ) ¯ n : relative error in ¯ ¯ n ( z ) . n ( z ) . E (0) (Computations in quadruple-precision.) Note: ¯ 24 ( κ = 20) = 2 . 21 D − 33 . 9

  10. Example: Linear convergence (cont’d). u and d (1) transformations on A n = � n i =1 z i − 1 /i , n = 1 , 2 , . . . , lim n →∞ A n = − log(1 − z ) /z ≡ f ( z ) . R l = κ ( l + 1) , with κ > 0 integer (APS). ( κ = 1 gives the u transformation.) E (0) E (0) E (0) ¯ ¯ ¯ s z n ( κ = 1) “smallest” error 28 ( κ = 1) 28 ( κ = s ) 1 0 . 5 4 . 97 D − 30 ( n = 28) 4 . 97 D − 30 4 . 97 D − 30 0 . 5 1 / 2 ≈ 0 . 707 2 1 . 39 D − 25 ( n = 35) 5 . 11 D − 21 3 . 26 D − 31 0 . 5 1 / 3 ≈ 0 . 794 3 5 . 42 D − 23 ( n = 38) 4 . 70 D − 17 4 . 79 D − 31 0 . 5 1 / 4 ≈ 0 . 841 4 1 . 41 D − 21 ( n = 41) 1 . 02 D − 14 5 . 74 D − 30 0 . 5 1 / 5 ≈ 0 . 871 5 1 . 31 D − 19 ( n = 43) 3 . 91 D − 13 1 . 59 D − 30 0 . 5 1 / 6 ≈ 0 . 891 6 1 . 69 D − 18 ( n = 43) 5 . 72 D − 12 2 . 60 D − 30 0 . 5 1 / 7 ≈ 0 . 906 7 1 . 94 D − 17 ( n = 44) 4 . 58 D − 11 4 . 72 D − 30 E (0) A (0) A ( j ) n ( z ) are the computed A ( j ) ¯ = | ¯ ( z ) − f ( z ) | , and the ¯ n ( z ) . n n (Computations in quadruple-precision arithmetic.) Best results for z κ fixed and away from 1 , the point of singularity of f ( z ) . In our case, z κ = 0 . 5 maintained for every z > 0 in the table. Note that R l = ⌊ κ ( l + 1) ⌋ with non-integer κ > 1 also gives excellent results. 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend