structure functions and low x
play

Structure Functions and Low-x Working Group Summary Convenors A. - PowerPoint PPT Presentation

Structure Functions and Low-x Working Group Summary Convenors A. Glazov S. Moch K. Nagano Sven-Olaf.Moch@desy.de DESY Zeuthen


  1. Structure Functions and Low-x Working Group Summary Convenors A. Glazov S. Moch K. Nagano Sven-Olaf.Moch@desy.de DESY Zeuthen ————————————————————————————————————– – XV International Workshop on Deep-Inelastic Scattering and Related Subjects, Munich, Apr 20, 2007 – S. Moch Structure Functions and Low-x – p.1

  2. Plan Longitudinal structure function F L measurement of high- y cross sections, low energy run of HERA News on Parton density functions updates of global fits structure functions measurements (HERA) hard scattering cross sections (Tevatron) Forward jets and low- x HERA measurements and theory models Theory outlook S. Moch Structure Functions and Low-x – p.2

  3. Structure function F L S. Moch Structure Functions and Low-x – p.3

  4. Cross Section vargas Vargas Data fill the transition region at Q² ~1 GeV² Combined preliminary H1 data in agreement with ZEUS H1 low- Q 2 analysis final measurement for HERA-I at low Q 2 (long time effort) improved precision for extraction of F L Andrea Vargas Treviño DIS 2007, München S. Moch Structure Functions and Low-x – p.4

  5. raicevic ���������� 2 2 d σ 2π Y α Q 2 / GeV 2 2 σ + Y 1 (1 y) = = + − r + 2 4 dxdQ Q x 10 4 H1 HERA-I 2 y H1 HERA-II high y 2 2 σ F (x, Q ) F (x, Q ) 0 F F ≤ ≤ = − r 2 L L 2 NMC Y + 10 3 BCDMS F L gives�sizable�contribution�only�at�high�y ' E 2 x Q /sy = 2 y 1 e sin (θ /2) = − 10 2 e E e � This�analysis:�high�y,�low�and�medium�Q 2� � as�low�as�possible�low�E’ e required 10 y = 1 y = 0.6 xg(x)�~F L� (at�low�x) � From ����� xg(x)�– gluon�density�function 1 -5 -4 -3 -2 -1 10 10 10 10 10 1 x � Experimental�challenges�of�this�analysis�are�similar�to�the�ones�for�analysis�of�� low�energy�run. direct measurement of F L in high- y region ����������� ��������������������������� � Raicevic (very difficult) S. Moch Structure Functions and Low-x – p.5

  6. ������������� raicevic large backgrounds H1 Preliminary 10 3 events 10 3 events Data HERA-II 20 MC+BG 30 BG (data) 15 20 10 photo-production 10 5 low- Q 2 electron 0 0 4 6 8 10 150 155 160 165 170 (wrong charge lepton) Θ e /deg E e /GeV 10 3 events 10 3 events 20 initial state radiation 20 large QED bkgd 15 (cut beam energy) 10 10 5 0 0 -40 -20 0 20 40 0 20 40 60 80 Z v /cm Total E-p z /GeV E�p z =�(E�– p z ) HFS +�(E�– p z ) e’ =�2P(measured�beam�energy) ����������� ��������������������������� / Raicevic S. Moch Structure Functions and Low-x – p.6

  7. 6m tagged sample ZEUS: background control by e − -tagging at low Q 2 shimizu Shimizu � 6m tagger located downstream of electron beam. different technologies as H1 (cross check) � Direct detection of PHP events with good acceptance. x pos on Energy in 6mT 6mT e + e + CAL energy � e of misidentified electron � Not perfect, but reasonable description of distribution shape by PHP MC. + data Normalized by Nevents – PHP MC 9 S. Moch Structure Functions and Low-x – p.7

  8. Reduced cross section shimizu Shimizu � Measured reduced cross sections ZEUS are compared to SM predictions 2 2 2 2 2 2 2 2 2 Q = 27 GeV Q = 35 GeV Q = 45 GeV Q = 60 GeV with σ ~ 1 – CTEQ5D – ZEUS-Jets PDF 0 2 2 2 2 2 2 2 2 2 Q = 70 GeV Q = 90 GeV Q = 120 GeV Q = 150 GeV � They are well described by the 1 predictions. 0 2 2 2 2 2 2 2 2 2 Q = 200 GeV Q = 250 GeV Q = 350 GeV Q = 450 GeV � Systematics 1 • Electron energy scale 2% • PHP norm. factor 10% 0 2 2 2 2 2 2 2 Q = 650 GeV Q = 800 GeV Q = 1200 GeV ZEUS (prel.) • Electron finding inefficiency 10% -1 06e+p (29pb ) 1 • E-pz threshold 2GeV CTEQ5d ZEUS-Jets 0 0 0.5 1 0 0.5 1 0 0.5 1 y 14 S. Moch Structure Functions and Low-x – p.8

  9. ������������������(���)*+,-.�������������� raicevic 0�1��!!������� 23��& �4 σ red H1 Preliminary Y=0.825 1.4 1.3 cross section at 1.2 high y (preliminary) 1.1 H1 HERA-II prelim. (W=289 GeV) H1 1997 (W=273 GeV) 1 10 15 20 25 Q 2 /GeV 2 • The�precision�of�the�new�measurements�is�about�factor�of�2�better�than�in�the�� published�results�based�on�HERA�I�data. • Systematic�cross�section�uncertainty�2�3%. ����������� ��������������������������� �' Raicevic S. Moch Structure Functions and Low-x – p.9

  10. � � � � Low Energy Running shimizu Shimizu � HERA has finished ‘usual’ operation on 21/Mar/2007 � Since then, HERA started to deliver luminosity with lowered proton beam energy (LER) successfully. Congratulations to HERA! 26/Mar � 2/Jul: 3 months of LER operation. � Main issue in LER: F L y ~ 2 F ( x , Q ) F ( x , Q ) 2 2 Y 2 L Cross sections with same (x,Q 2 ) but different y, i.e. Different centre of mass energy � Direct separation of F L from F 2 . w/o theory assumption � F L at low-x : legacy of HERA direct F L at HERA: unique measurement 17 S. Moch Structure Functions and Low-x – p.10

  11. klein Luminosity collected by April 16th enlarged satelites increase of L and � with t Klein Max Klein low energy run 17.4.2007 DIS07 S. Moch Structure Functions and Low-x – p.11

  12. Perturbative corrections for F L S.M., Vermaseren, Vogt ‘05 α ( n ) c ( n − 1) b a,i ( N ) ( N ) a,i large higher order corrections = (4 π ) 2 c ( n ) a,i ( N ) 0.8 1 ∧ 2,ns (N) x(c L,q q S ) α ⊗ 0.8 0.6 NLO LO 0.6 N 2 LO 0.4 NLO N 3 LO 0.4 NNLO 0.2 0.2 0 0 -5 -4 -3 -2 -1 5 10 15 10 10 10 10 10 1 4 ∧ L,ns (N) x(c L,g g) α ⊗ 0.4 3 α S = 0.2, n f = 4 NLO 0.3 2 N 2 LO 0.2 1 0.1 N f = 4 0 0 -5 -4 -3 -2 -1 5 10 15 10 10 10 10 10 1 x N S. Moch Structure Functions and Low-x – p.12

  13. News on global fits S. Moch Structure Functions and Low-x – p.13

  14. Obtain NNLO partons with uncertainties due to experimental errors for the first partons go NNLO with errors thorne 1.5 time. Reported last year. Same procedure as before – 15 eigenvector sets of partons and ∆ χ 2 = 50 for 90% confidence limit. 1 xu(x,Q 2 =20) First time we have full NNLO with no major approximations. (Heavy flavours a major issue.) In general size of uncertainties similar 0.5 (perhaps a little smaller) to at NLO. Change from NLO to NNLO greater than uncertainty in each. NNLO fit consistently better than NLO. 0 -4 -3 -2 -1 NNLO resolves more features of theory e.g. 10 10 10 10 q s , q v , q − all evolve with different kernels Thorne DIS07 MRST(MSTW) 3 S. Moch Structure Functions and Low-x – p.14

  15. �$-�"������������ �������=��"���������� tung ?�'�#�(�*-�"�-!�"-��4 �#"-��"���������� ���@�8� Tung �A���> �#-��*�%-#"-������ �������= heavy flavor scheme with general mass implemented (charm) changes in PDF updates larger than previous error estimates � � S. Moch Structure Functions and Low-x – p.15

  16. CDF k T robson Measured in 5 bins of y jet Forward jet - asymmetric interaction DonÕt expect new physics in high y jet region High- x gluon from inclusive jets Robson Aidan Robson Glasgow University 17/22 S. Moch Structure Functions and Low-x – p.16

  17. Z Rapidity toole Submitted to PRD � Main contributions to syst's: eff's, backgrounds. At high y: eff's, PDFs � Theory and data in good agreement Toole � Measurement is currently statistics limited * Curves made with code from Anastasiou, et. al., PRD69, 094008 (2004). April 17, 2007 DIS 2007 6 S. Moch Structure Functions and Low-x – p.17

  18. W Charge Asymmetry with muons toole ∫ L dt = 230 pb -1 � Curves produced with Resbos-A constrain u/d ratio � Main systematic uncertainty is from efficiencies ε ± � Measurement currently statistics limited Toole April 17, 2007 DIS 2007 9 S. Moch Structure Functions and Low-x – p.18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend