stochastic energy exchange models of non equilibrium
play

Stochastic energy-exchange models of non-equilibrium. Cristian - PowerPoint PPT Presentation

Stochastic energy-exchange models of non-equilibrium. Cristian Giardina Joint work with J. Kurchan (Paris), F . Redig (Delft) K.Vafayi (Eindhoven), G. Carinci, C. Giberti (Modena). Cristian Giardin` a (UniMoRe) Fourier law J = T -


  1. SU ( 1 , 1 ) structure Discrete representation � � ξ i + 1 K + i | ξ i � = | ξ i + 1 � 2 K − i | ξ i � = ξ i | ξ i − 1 � � ξ i + 1 � K o i | ξ i � = | ξ i � 4 Cristian Giardin` a (UniMoRe)

  2. SU ( 1 , 1 ) structure Discrete representation � � ξ i + 1 K + i | ξ i � = | ξ i + 1 � 2 K − i | ξ i � = ξ i | ξ i − 1 � � ξ i + 1 � K o i | ξ i � = | ξ i � 4 In a canonical base 1   0 0 1 0     4 ... ...  ...         1    5 2       2 4       K + K 0   = K − = i =     ... ... ... ... i   i       3     9    2    4         ...  ... ...    ...   Cristian Giardin` a (UniMoRe)

  3. SU ( 1 , 1 ) structure Discete representation � � ξ i + 1 K + i | ξ i � = | ξ i + 1 � 2 K − i | ξ i � = ξ i | ξ i − 1 � � ξ i + 1 � K o i | ξ i � = | ξ i � 4 In this representation L f ( ξ ) = L SIP f ( ξ ) � ξ j + 1 � � ξ i + 1 � � [ f ( ξ i , j ) − f ( ξ )] + ξ j [ f ( ξ j , i ) − f ( ξ )] = ξ i 2 2 ( i , j ) ∈ E Cristian Giardin` a (UniMoRe)

  4. SU ( 1 , 1 ) structure Intertwiner K + i D i ( · , ξ i )( x i ) = K + i D i ( x i , · )( ξ i ) K − i D i ( · , ξ i )( x i ) = K − i D i ( x i , · )( ξ i ) K o i D i ( · , ξ i )( x i ) = K o i D i ( x i , · )( ξ i ) From the creation operators x 2 � ξ i + 1 � i 2 D i ( x i , ξ i ) = D ( x , ξ i + 1 ) 2 Therefore x 2 ξ i i D i ( x i , ξ i ) = ( 2 ξ i − 1 )!! D i ( x i , 0 ) Cristian Giardin` a (UniMoRe)

  5. Self-duality Cristian Giardin` a (UniMoRe)

  6. Markov chain with finite state space Cristian Giardin` a (UniMoRe)

  7. Markov chain with finite state space 1. Matrix formulation of self-duality ( L dual = L ) LD = DL T Cristian Giardin` a (UniMoRe)

  8. Markov chain with finite state space 1. Matrix formulation of self-duality ( L dual = L ) LD = DL T Indeed Cristian Giardin` a (UniMoRe)

  9. Markov chain with finite state space 1. Matrix formulation of self-duality ( L dual = L ) LD = DL T Indeed LD ( · , ξ )( η ) = LD ( η, · )( ξ ) Cristian Giardin` a (UniMoRe)

  10. Markov chain with finite state space 1. Matrix formulation of self-duality ( L dual = L ) LD = DL T Indeed � L ( η, η ′ ) D ( η ′ , ξ ) = LD ( · , ξ )( η ) = LD ( η, · )( ξ ) η ′ Cristian Giardin` a (UniMoRe)

  11. Markov chain with finite state space 1. Matrix formulation of self-duality ( L dual = L ) LD = DL T Indeed � L ( η, η ′ ) D ( η ′ , ξ ) = LD ( · , ξ )( η ) = LD ( η, · )( ξ ) = � L ( ξ, ξ ′ ) D ( η, ξ ′ ) η ′ ξ ′ Cristian Giardin` a (UniMoRe)

  12. Self-Duality 2. trivial self-duality ⇐ ⇒ reversible measure µ 1 d ( η, ξ ) = µ ( η ) δ η,ξ Cristian Giardin` a (UniMoRe)

  13. Self-Duality 2. trivial self-duality ⇐ ⇒ reversible measure µ 1 d ( η, ξ ) = µ ( η ) δ η,ξ Indeed Cristian Giardin` a (UniMoRe)

  14. Self-Duality 2. trivial self-duality ⇐ ⇒ reversible measure µ 1 d ( η, ξ ) = µ ( η ) δ η,ξ Indeed Ld ( η, ξ ) = dL T ( η, ξ ) Cristian Giardin` a (UniMoRe)

  15. Self-Duality 2. trivial self-duality ⇐ ⇒ reversible measure µ 1 d ( η, ξ ) = µ ( η ) δ η,ξ Indeed L ( η, ξ ) = Ld ( η, ξ ) = dL T ( η, ξ ) µ ( ξ ) Cristian Giardin` a (UniMoRe)

  16. Self-Duality 2. trivial self-duality ⇐ ⇒ reversible measure µ 1 d ( η, ξ ) = µ ( η ) δ η,ξ Indeed L ( η, ξ ) = Ld ( η, ξ ) = dL T ( η, ξ ) = L ( ξ, η ) µ ( ξ ) µ ( η ) Cristian Giardin` a (UniMoRe)

  17. Self-Duality 3. S : symmetry of the generator, i.e. [ L , S ] = 0, d : trivial self-duality function, − → D = Sd self-duality function. Cristian Giardin` a (UniMoRe)

  18. Self-Duality 3. S : symmetry of the generator, i.e. [ L , S ] = 0, d : trivial self-duality function, − → D = Sd self-duality function. Indeed Cristian Giardin` a (UniMoRe)

  19. Self-Duality 3. S : symmetry of the generator, i.e. [ L , S ] = 0, d : trivial self-duality function, − → D = Sd self-duality function. Indeed LD Cristian Giardin` a (UniMoRe)

  20. Self-Duality 3. S : symmetry of the generator, i.e. [ L , S ] = 0, d : trivial self-duality function, − → D = Sd self-duality function. Indeed LD = LSd Cristian Giardin` a (UniMoRe)

  21. Self-Duality 3. S : symmetry of the generator, i.e. [ L , S ] = 0, d : trivial self-duality function, − → D = Sd self-duality function. Indeed LD = LSd = SLd Cristian Giardin` a (UniMoRe)

  22. Self-Duality 3. S : symmetry of the generator, i.e. [ L , S ] = 0, d : trivial self-duality function, − → D = Sd self-duality function. Indeed LD = LSd = SLd = SdL T Cristian Giardin` a (UniMoRe)

  23. Self-Duality 3. S : symmetry of the generator, i.e. [ L , S ] = 0, d : trivial self-duality function, − → D = Sd self-duality function. Indeed LD = LSd = SLd = SdL T = DL T Cristian Giardin` a (UniMoRe)

  24. Self-Duality 3. S : symmetry of the generator, i.e. [ L , S ] = 0, d : trivial self-duality function, − → D = Sd self-duality function. Indeed LD = LSd = SLd = SdL T = DL T Self-duality is related to the action of a symmetry. Cristian Giardin` a (UniMoRe)

  25. Self-duality of the SIP process Theorem 2 The process with generator L SIP is self-dual on functions � 1 � Γ η i ! � 2 D ( η, ξ ) = � 1 ( η i − ξ i )! � Γ 2 + ξ i i ∈ V Cristian Giardin` a (UniMoRe)

  26. Self-duality of the SIP process Theorem 2 The process with generator L SIP is self-dual on functions � 1 � Γ η i ! � 2 D ( η, ξ ) = � 1 ( η i − ξ i )! � Γ 2 + ξ i i ∈ V Proof: [ L SIP , � K o i ] = [ L SIP , � K + i ] = [ L SIP , � K − i ] = 0 i i i i K + � Self-duality fct related to the simmetry S = e i Cristian Giardin` a (UniMoRe)

  27. Boundary driven systems. Cristian Giardin` a (UniMoRe)

  28. Brownian Momentum Process with reservoirs 2 2 x x i j BMP L     2 2     res res L T x L T x     R R N 2 L L 1 2 x x x x N N 1 1 Cristian Giardin` a (UniMoRe)

  29. Inclusion Process with absorbing reservoirs j i SIP L         abs L       L abs 1 , 0 f 2 f f N 1 1 Cristian Giardin` a (UniMoRe)

  30. Duality between BMP with reservoirs and SIP with absorbing boundaries Configurations ¯ ξ = ( ξ 0 , ξ 1 , . . . , ξ N , ξ N + 1 ) ∈ Ω dual = N N + 2 Cristian Giardin` a (UniMoRe)

  31. Duality between BMP with reservoirs and SIP with absorbing boundaries Configurations ¯ ξ = ( ξ 0 , ξ 1 , . . . , ξ N , ξ N + 1 ) ∈ Ω dual = N N + 2 Theorem 3 The process { x ( t ) } t ≥ 0 with generator L BMP , res is dual to the process ξ ( t ) } t ≥ 0 with generator L SIP , abs on { ¯ � N x 2 ξ i � T ξ N + 1 D ( x , ¯ ξ ) = T ξ 0 � i L R ( 2 ξ i − 1 )!! i = 1 Cristian Giardin` a (UniMoRe)

  32. CONSEQUENCES OF DUALITY From continuous to discrete: Interacting diffusions (BMP) studied via particle systems (SIP). From many to few: n -points correlation functions of N particles using n dual walkers Remark: n ≪ N From reservoirs to absorbing boundaries: Stationary state of dual process described by absorption probabilities at the boundaries Cristian Giardin` a (UniMoRe)

  33. Proposition ξ ( a , b ) = P ( ξ 0 ( ∞ ) = a , ξ N + 1 ( ∞ ) = b | ξ ( 0 ) = ¯ ξ ) . Then Let P ¯ E ( D ( x , ¯ � T a L T b ξ )) = R P ¯ ξ ( a , b ) a , b Cristian Giardin` a (UniMoRe)

  34. Proposition ξ ( a , b ) = P ( ξ 0 ( ∞ ) = a , ξ N + 1 ( ∞ ) = b | ξ ( 0 ) = ¯ ξ ) . Then Let P ¯ E ( D ( x , ¯ � T a L T b ξ )) = R P ¯ ξ ( a , b ) a , b Proof: E ( D ( x , ¯ t →∞ E x 0 ( D ( x t , ¯ ξ )) = lim ξ )) Cristian Giardin` a (UniMoRe)

  35. Proposition ξ ( a , b ) = P ( ξ 0 ( ∞ ) = a , ξ N + 1 ( ∞ ) = b | ξ ( 0 ) = ¯ ξ ) . Then Let P ¯ E ( D ( x , ¯ � T a L T b ξ )) = R P ¯ ξ ( a , b ) a , b Proof: E ( D ( x , ¯ t →∞ E x 0 ( D ( x t , ¯ ξ )) = lim ξ )) ξ ( D ( x 0 , ¯ = lim ξ t )) t →∞ E ¯ Cristian Giardin` a (UniMoRe)

  36. Proposition ξ ( a , b ) = P ( ξ 0 ( ∞ ) = a , ξ N + 1 ( ∞ ) = b | ξ ( 0 ) = ¯ ξ ) . Then Let P ¯ E ( D ( x , ¯ � T a L T b ξ )) = R P ¯ ξ ( a , b ) a , b Proof: E ( D ( x , ¯ t →∞ E x 0 ( D ( x t , ¯ ξ )) = lim ξ )) ξ ( D ( x 0 , ¯ = lim ξ t )) t →∞ E ¯ � N x 2 ξ i � T ξ N + 1 D ( x , ¯ ξ ) = T ξ 0 � i using L R ( 2 ξ i − 1 )!! i = 1 Cristian Giardin` a (UniMoRe)

  37. Proposition ξ ( a , b ) = P ( ξ 0 ( ∞ ) = a , ξ N + 1 ( ∞ ) = b | ξ ( 0 ) = ¯ ξ ) . Then Let P ¯ E ( D ( x , ¯ � T a L T b ξ )) = R P ¯ ξ ( a , b ) a , b Proof: E ( D ( x , ¯ t →∞ E x 0 ( D ( x t , ¯ ξ )) = lim ξ )) ξ ( D ( x 0 , ¯ = lim ξ t )) t →∞ E ¯ � N x 2 ξ i � T ξ N + 1 D ( x , ¯ ξ ) = T ξ 0 � i using L R ( 2 ξ i − 1 )!! i = 1 ξ ( T ξ 0 ( ∞ ) T ξ N + 1 ( ∞ ) = E ¯ ) L R Cristian Giardin` a (UniMoRe)

  38. Temperature profile ξ = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 ) ⇒ D ( x , � � ξ ) = x 2 i site i ր ⇒ 1 SIP walker ( X t ) t ≥ 0 with X 0 = i Cristian Giardin` a (UniMoRe)

  39. Temperature profile ξ = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 ) ⇒ D ( x , � � ξ ) = x 2 i site i ր ⇒ 1 SIP walker ( X t ) t ≥ 0 with X 0 = i � � x 2 = T L P i ( X ∞ = 0 ) + T R P i ( X ∞ = N + 1 ) E i Cristian Giardin` a (UniMoRe)

  40. Temperature profile ξ = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 ) ⇒ D ( x , � � ξ ) = x 2 i site i ր ⇒ 1 SIP walker ( X t ) t ≥ 0 with X 0 = i � � x 2 = T L P i ( X ∞ = 0 ) + T R P i ( X ∞ = N + 1 ) E i � T R − T L � E ( x 2 i ) = T L + i N + 1 i ) = T R − T L � J � = E ( x 2 i + 1 ) − E ( x 2 Fourier ′ s law N + 1 Cristian Giardin` a (UniMoRe)

  41. Energy covariance If � D ( x , � ξ ) = x 2 i x 2 ξ = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 , 1 , 0 , . . . , 0 ) ⇒ j site i ր site j ր Cristian Giardin` a (UniMoRe)

  42. Energy covariance If � D ( x , � ξ ) = x 2 i x 2 ξ = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 , 1 , 0 , . . . , 0 ) ⇒ j site i ր site j ր In the dual process we initialize two SIP walkers ( X t , Y t ) t ≥ 0 with ( X 0 , Y 0 ) = ( i , j ) Cristian Giardin` a (UniMoRe)

  43. Inclusion Process with absorbing reservoirs j i SIP L         abs L       L abs 1 , 0 f 2 f f N 1 1 Cristian Giardin` a (UniMoRe)

  44. j i Cristian Giardin` a (UniMoRe)

  45. j i Cristian Giardin` a (UniMoRe)

  46. j i Cristian Giardin` a (UniMoRe)

  47. j i Cristian Giardin` a (UniMoRe)

  48. j i Cristian Giardin` a (UniMoRe)

  49. j i Cristian Giardin` a (UniMoRe)

  50. j i Cristian Giardin` a (UniMoRe)

  51. j i Cristian Giardin` a (UniMoRe)

  52. j i                 2 2 2 2 E x x T P T P T T P P i j L R L R Cristian Giardin` a (UniMoRe)

  53. Energy covariance 2 i ( N + 1 − j ) � � � � � � ( N + 3 )( N + 1 ) 2 ( T R − T L ) 2 ≥ 0 x 2 i x 2 x 2 x 2 − E = E E j i j Remark : up to a sign, covariance is the same in the boundary driven Exclusion Process. Cristian Giardin` a (UniMoRe)

  54. A larger picture & redistribution models (i). Brownian Energy Process BEP ( m ) (ii). Instantaneous thermalization (iii). Symmetric exclusion (SEP(n)) Cristian Giardin` a (UniMoRe)

  55. (i) Brownian Energy Process: BEP The energies of the Brownian Momentum Process z i ( t ) = x 2 i ( t ) Cristian Giardin` a (UniMoRe)

  56. (i) Brownian Energy Process: BEP The energies of the Brownian Momentum Process z i ( t ) = x 2 i ( t ) evolve with Generator � ∂ � ∂ � 2 � − ∂ − 1 − ∂ L BEP = � z i z j 2 ( z i − z j ) ∂ z i ∂ z j ∂ z i ∂ z j ( i , j ) ∈ E Cristian Giardin` a (UniMoRe)

  57. Generalized Brownian Energy Process: BEP(m) m � 2 � ∂ ∂ L BMP ( m ) = � � x i ,α − x j ,β ∂ x j ,β ∂ x i ,α α,β = 1 ( i , j ) ∈ E Cristian Giardin` a (UniMoRe)

  58. Generalized Brownian Energy Process: BEP(m) m � 2 � ∂ ∂ L BMP ( m ) = � � x i ,α − x j ,β ∂ x j ,β ∂ x i ,α α,β = 1 ( i , j ) ∈ E z i ( t ) = � m α = 1 x 2 The energies i ,α ( t ) evolve with Generator � ∂ � ∂ � 2 � − ∂ − m − ∂ L BEP ( m ) = � z i z j 2 ( z i − z j ) ∂ z i ∂ z j ∂ z i ∂ z j ( i , j ) ∈ E Stationary measures: product Gamma ( m 2 , θ ) Cristian Giardin` a (UniMoRe)

  59. Adding-up SU ( 1 , 1 ) spins j + m 2 � � L ( m ) = � K + i K − j + K − i K + j − 2 K o i K o 8 ( i , j ) ∈ E K + i , K − i , K o � � satisfy SU ( 1 , 1 ) i i ∈ V Cristian Giardin` a (UniMoRe)

  60. Adding-up SU ( 1 , 1 ) spins j + m 2 � � L ( m ) = � K + i K − j + K − i K + j − 2 K o i K o 8 ( i , j ) ∈ E K + i , K − i , K o � � satisfy SU ( 1 , 1 ) i i ∈ V K + K + ξ i + m   � � i = z i i | ξ i � = | ξ i + 1 � 2           K − i = z i ∂ 2 z i + m K − 2 ∂ z i i | ξ i � = ξ i | ξ i − 1 �        i = z i ∂ z i + m  K o K 0 i | ξ i � = ( ξ i + m ) | ξ i �   4 Cristian Giardin` a (UniMoRe)

  61. Generalized Symmetric Inclusion Process: SIP(m) Generator L SIP ( m ) f ( ξ ) = ξ j + m ξ i + m � � � � � [ f ( ξ i , j ) − f ( ξ )] + ξ j [ f ( ξ j , i ) − f ( ξ )] ξ i 2 2 ( i , j ) ∈ E Cristian Giardin` a (UniMoRe)

  62. Duality between BEP(m) and SIP(m) Theorem 4 The process { z ( t ) } t ≥ 0 with generator L BEP ( m ) and the process { ξ ( t ) } t ≥ 0 with generator L SIP ( m ) are dual on Γ( m 2 ) � z ξ i D ( z , ξ ) = Γ( m i 2 + ξ i ) i ∈ V Cristian Giardin` a (UniMoRe)

  63. (ii) Redistribution models Generator L KMP f ( z ) = � 1 � dp [ f ( z 1 , . . . , p ( z i + z i + 1 ) , ( 1 − p )( z i + z i + 1 ) , . . . , z N ) − f ( z )] 0 i KMP model is an instantaneous thermalization limit of BEP(2). Cristian Giardin` a (UniMoRe)

  64. Instantaneous thermalization limit L IT i , j f ( z i , z j ) Cristian Giardin` a (UniMoRe)

  65. Instantaneous thermalization limit � � e tL BEP ( m ) L IT i , j f ( z i , z j ) := lim − 1 f ( z i , z j ) i , j t →∞ Cristian Giardin` a (UniMoRe)

  66. Instantaneous thermalization limit � � e tL BEP ( m ) L IT i , j f ( z i , z j ) := lim − 1 f ( z i , z j ) i , j t →∞ � dz ′ i dz ′ j ρ ( m ) ( z ′ i , z ′ j | z ′ i + z ′ j = z i + z j )[ f ( z ′ i , z ′ = j ) − f ( z i , z j )] Cristian Giardin` a (UniMoRe)

  67. Instantaneous thermalization limit � � e tL BEP ( m ) L IT i , j f ( z i , z j ) := lim − 1 f ( z i , z j ) i , j t →∞ � dz ′ i dz ′ j ρ ( m ) ( z ′ i , z ′ j | z ′ i + z ′ j = z i + z j )[ f ( z ′ i , z ′ = j ) − f ( z i , z j )] � 1 dp ν ( m ) ( p ) [ f ( p ( z i + z j ) , ( 1 − p )( z i + z j )) − f ( z i , z j )] = 0 Cristian Giardin` a (UniMoRe)

  68. Instantaneous thermalization limit � � e tL BEP ( m ) L IT i , j f ( z i , z j ) := lim − 1 f ( z i , z j ) i , j t →∞ � dz ′ i dz ′ j ρ ( m ) ( z ′ i , z ′ j | z ′ i + z ′ j = z i + z j )[ f ( z ′ i , z ′ = j ) − f ( z i , z j )] � 1 dp ν ( m ) ( p ) [ f ( p ( z i + z j ) , ( 1 − p )( z i + z j )) − f ( z i , z j )] = 0 � m X � m 2 , m � � X , Y ∼ Gamma 2 , θ i . i . d . = ⇒ P = X + Y ∼ Beta 2 For m = 2: uniform redistribution Cristian Giardin` a (UniMoRe)

  69. (iii) Generalized Symmetric Exclusion Process, SEP(n) [Sch¨ utz] Configuration ξ = ( ξ 1 , . . . , ξ | V | ) ∈ { 0 , 1 , 2 , . . . , n } | V | Cristian Giardin` a (UniMoRe)

  70. (iii) Generalized Symmetric Exclusion Process, SEP(n) [Sch¨ utz] Configuration ξ = ( ξ 1 , . . . , ξ | V | ) ∈ { 0 , 1 , 2 , . . . , n } | V | L SEP ( n ) f ( ξ ) = � ξ i ( n − ξ j )[ f ( ξ i , j ) − f ( ξ )] + ( n − ξ i ) ξ j [ f ( ξ j , i ) − f ( ξ )] ( i , j ) ∈ E Cristian Giardin` a (UniMoRe)

  71. (iii) Generalized Symmetric Exclusion Process, SEP(n) [Sch¨ utz] Configuration ξ = ( ξ 1 , . . . , ξ | V | ) ∈ { 0 , 1 , 2 , . . . , n } | V | L SEP ( n ) f ( ξ ) = � ξ i ( n − ξ j )[ f ( ξ i , j ) − f ( ξ )] + ( n − ξ i ) ξ j [ f ( ξ j , i ) − f ( ξ )] ( i , j ) ∈ E Stationary measures: product with marginals Binomial(n,p) Cristian Giardin` a (UniMoRe)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend