stochastic cosmic ray sources and the tev break in the
play

Stochastic cosmic ray sources and the TeV break in the all-electron - PowerPoint PPT Presentation

Stochastic cosmic ray sources and the TeV break in the all-electron spectrum arXiv:1809.????? Philipp Mertsch TeVPA 2018, Berlin 30 August 2018 Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 1 /


  1. Stochastic cosmic ray sources and the TeV break in the all-electron spectrum arXiv:1809.????? Philipp Mertsch TeVPA 2018, Berlin 30 August 2018 Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 1 / 21

  2. Cosmic ray e ± and cosmic ray origin What are the sources of cosmic rays? No source of local cosmic rays has been unambigously identified. Nuclei Electrons and positron • Far away and old sources • Only young nearby sources can contribute contribute at high energies due to energy losses → Features from individual sources averaged out → Can observe features from individual sources • Use anisotropies? Find sources with high-energy e ± Difficult! Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 2 / 21

  3. Green’s function • Solve simplified transport equation for e ± spectral density ψ ∂ψ ∂ t − ∇ · κ · ∇ ψ + ∂ ∂ p ( b ( p ) ψ ) = δ ( r − r 0 ) δ ( t − t 0 ) Q ( p ) • For spatially independent κ and b ( p ), energy becomes pseudo time → Solve heat equation: b ( p ) � � − 3 / 2 e −| r − r 0 | 2 /ℓ 2 ( p , t ) πℓ 2 ( p , t ) ψ ( r , t , p ) = b ( p 0 ( p , t )) Q ( p 0 ( p , t )) where � p d p ′ D xx ( p ′ ) ℓ 2 ( p , t ) = 4 b ( p ′ ) p 0 ( p , t ) • Boundary condition in z -direction can be treated by method of mirror sources Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 3 / 21

  4. Green’s function b ( p ) � � − 3 / 2 e −| r − r 0 | 2 /ℓ 2 ( p , t ) πℓ 2 ( p , t ) ψ ( r , t , p ) = b ( p 0 ( p , t )) Q ( p 0 ( p , t )) 10 5 10 4 t = 1000 yr 10 3 t = 10 4 yr s=0.3 kpc E 3 F [a.u.] 10 2 s=1.0 kpc t = 10 5 yr 10 1 s=3.0 kpc t = 10 6 yr 10 0 10 1 10 2 10 0 10 1 10 2 10 3 10 4 10 5 10 6 E [GeV] with D xx = D 0 p δ , Q ( p 0 ) ∝ p − Γ exp[ − p 0 / p c ] 0 Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 4 / 21

  5. Green’s function b ( p ) � � − 3 / 2 e −| r − r 0 | 2 /ℓ 2 ( p , t ) πℓ 2 ( p , t ) ψ ( r , t , p ) = b ( p 0 ( p , t )) Q ( p 0 ( p , t )) 10 5 10 4 t = 1000 yr 10 3 t = 10 4 yr s=0.3 kpc E 3 F [a.u.] 10 2 s=1.0 kpc t = 10 5 yr 10 1 s=3.0 kpc t = 10 6 yr 10 0 10 1 10 2 10 0 10 1 10 2 10 3 10 4 10 5 10 6 E [GeV] with D xx = D 0 p δ , Q ( p 0 ) ∝ p − Γ exp[ − p 0 / p c ] 0 Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 4 / 21

  6. Flux from a population of sources consider ensemble of sources at distances r i and with ages t i observer s i source ( b 0 t a ) 1 ( b 0 t c ) 1 1 1 ( b 0 t b ) ( b 0 t d ) Ignorance of r i and t i ⇒ cannot predict e ± spectrum E 3 F r a r b measure e ± spectrum ⇒ learn r d about r i and t i r c Energy E Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 5 / 21

  7. The TeV break Kerszberg et al. , ICRC 2017 Ambrosi et al. (2017) ] -1 sr Preliminary ⋅ -1 250 s ⋅ E 3 × Flux [m − 2 s − 1 sr − 1 GeV 2 ] -2 m 2 10 ⋅ 2 [GeV 200 dN dE 150 3 Flux E 100 DAMPE H.E.S.S. (2008) H.E.S.S. (2009) 50 AMS-02 (2014) 10 Fermi-LAT (2017) HESS HE (2008) HESS LE (2009) 0 MAGIC (2011) AMS-02 (2014) 10 100 1,000 10,000 Energy [GeV] VERITAS (2015) Fermi-LAT HE (2017) Is the TeV break compatible with a HESS (2017) HESS Fit (2017) random ensemble of sources? 1 1 10 Energy [TeV] Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 6 / 21

  8. A statistical model observer s i source • Contribution from source i to φ k depends on distance s i and age t i i φ i = ( φ 1 , φ 2 , . . . φ N ) T → Spectrum is a random vector: φ = � • Statistically characterised by joint distribution f ( φ 1 , φ 2 , . . . φ N ) Applications 1 Likelihood of a model: evaluate f (ˆ φ 1 , ˆ φ 2 , . . . ˆ φ N ) for measured ˆ φ 2 Extrapolate to higher energies: f ( φ M +1 , . . . φ N | φ 1 , φ 2 , . . . φ M ) 3 Quickly generate samples from model, e.g. for forecasting Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 7 / 21

  9. Marginals and copula What is the joint distribution? • Non-parametric, e.g. kernel-density estimators? → curse of dimensionality • Multi-variate Gaussian? → would give Gaussian marginals (see below) Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 8 / 21

  10. Marginals and copula What is the joint distribution? • Non-parametric, e.g. kernel-density estimators? → curse of dimensionality • Multi-variate Gaussian? → would give Gaussian marginals (see below) → Use copulas to factorise problem: ◮ Multi-variate PDF on unit hypercube ◮ Have uniform marginals ◮ Encode correlations Sklar’s theorem f ( φ 1 , φ 2 , . . . φ N ) = f 1 ( φ 1 ) f 2 ( φ 2 ) . . . f N ( φ N ) c ( F 1 ( φ 1 ) , F 2 ( φ 2 ) , . . . F N ( φ N )) marginals copula CDFs (= 1D PDFs) Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 8 / 21

  11. Marginals: analytical approach observer source • Total flux is sum of fluxes from individual sources N N J i ( E ) = c � � J ( E ) = G ( E , t i , r i ) 4 π i =1 i =1 • r i and t i are random variables ⇒ Z i = G ( E , t i , r i ) is a random variable • What is f Z ( z )? Central limit theorem? c • � J � = 4 π � Z � is the flux from smooth distribution of sources. Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 9 / 21

  12. Marginals: analytical approach observer • Total flux is sum of fluxes from individual sources N N J i ( E ) = c � � J ( E ) = G ( E , t i , r i ) 4 π i =1 i =1 • r i and t i are random variables ⇒ Z i = G ( E , t i , r i ) is a random variable • What is f Z ( z )? Central limit theorem? c • � J � = 4 π � Z � is the flux from smooth distribution of sources. Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 9 / 21

  13. Diverging variance Lee (1979), Lagutin & Nikulin (1995), Ptuskin et al. (2006), PM (2010), Genolini et al. (2016) • � Z 2 � diverges: (4 D 0 ) 1 − 3 2 m Q m � Z m � = 1 1 2 m E − 2+ δ + 3 0 2 m (1 − δ ) − m Γ r 2 2 − r 2 ( b 0 (1 − δ )) 2 − 3 3 t max 2 m m π 1 � 1 e − m Λ 2 /λ 2 � ρ 2 2 m � m (Γ − 2)+ δ 1 ( λ 2 ) 1 − 3 d λ 2 (1 − λ 2 ) × 1 − δ ρ 2 0 2 where Λ 2 = b 0 (1 − δ ) i = b 0 (1 − δ ) E 1 − δ L 2 ρ 2 E 1 − δ r 2 and i 4 D 0 4 D 0 • Z m with m ≥ 2 increases faster with r → 0 than density of sources falls off • cannot apply central limit theorem • introduce minimum distance r min ?! Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 10 / 21

  14. Diverging variance Lee (1979), Lagutin & Nikulin (1995), Ptuskin et al. (2006), PM (2010), Genolini et al. (2016) • � Z 2 � diverges: (4 D 0 ) 1 − 3 2 m Q m � Z m � = 1 1 2 m E − 2+ δ + 3 0 2 m (1 − δ ) − m Γ r 2 2 − r 2 ( b 0 (1 − δ )) 2 − 3 3 t max 2 m m π 1 � 1 e − m Λ 2 /λ 2 � ρ 2 2 m � m (Γ − 2)+ δ 1 ( λ 2 ) 1 − 3 d λ 2 (1 − λ 2 ) × 1 − δ ρ 2 0 2 where Λ 2 = b 0 (1 − δ ) i = b 0 (1 − δ ) E 1 − δ L 2 ρ 2 E 1 − δ r 2 and i 4 D 0 4 D 0 • Z m with m ≥ 2 increases faster with r → 0 than density of sources falls off • cannot apply central limit theorem • introduce minimum distance r min ?! Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 10 / 21

  15. Stable law PM (2010) • for z → ∞ , f Z ( z ) has a power law tail: 1 1 1 E − δ − 4 3 Γ Q 4 / 3 z − α − 1 f Z ( z ) ≃ 0 r 2 8 π 2 D 0 t max max � �� � ≡ c + • Generalised central limit theorem for distributions with power law tail Gendenko & Kolmogorov (1949) N � Fluxes distributed as N →∞ Z i − → a N + b N S ( α, 1 , 1 , 0 , 1) stable law i =1 with a N = N � Z � � � α π c + N α b N = 2Γ(1 /α ) sin( π/ 2 α Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 11 / 21

  16. Numerical result PM (2018) 2.5 2.0 1 ] ) 1.5 2 sr 2 s 1.0 lg ( E 3 [GeV 2 cm 0.5 0.0 0.5 median 95% range 1.0 68% range 10 1 10 2 10 3 10 4 10 5 E [GeV] SN rate = 10 − 4 yr − 1 , Γ = 2 . 2, E cut = 10 5 GeV, z max = 4 kpc, full KN-losses, 10 4 realisations of source distribution Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 12 / 21

  17. Semi-analytical model: copula • Analytical computation of c ( F 1 , F 2 , . . . F N ) seems intractable • Compute a large ensemble of random samples in a Monte Carlo approach • Parametrise likelihood by pair copula construction Pair copula construction Idea: factorise joint PDF into product of (conditional) bi-variate PDFs, e.g.: f ( x 1 , x 2 , x 3 ) = f 1 ( x 1 ) f 2 ( x 2 ) f 3 ( x 3 ) c 12 ( F 1 ( x 1 ) , F 2 ( x 2 )) c 23 ( F 2 ( x 2 ) , F 3 ( x 3 )) × c 13 | 2 ( F 1 | 2 ( x 1 | x 2 ) , F 3 | 2 ( x 3 | x 2 )) pair copulas Technical details • Used regular D-vine • Tried various copulas, but Normal pair copula fits best • Determine (conditional) correlation coefficients by fitting Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 13 / 21

  18. Energy-energy correlations PM (2018) Philipp Mertsch (RWTH Aachen) Stochastic sources and the TeV electron break 30 August 2018 14 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend