statistics
play

Statistics Point Estimation Shiu-Sheng Chen Department of - PowerPoint PPT Presentation

Statistics Point Estimation Shiu-Sheng Chen Department of Economics National Taiwan University Fall 2019 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 1 / 38 Estimation Section 1 Estimation Shiu-Sheng Chen (NTU Econ) Statistics Fall


  1. Statistics Point Estimation Shiu-Sheng Chen Department of Economics National Taiwan University Fall 2019 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 1 / 38

  2. Estimation Section 1 Estimation Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 2 / 38

  3. Estimation Statistical Inference Given a random sample with sample size n { X 1 , X 2 , . . . , X n } ∼ i . i . d . f ( x ; θ ) where θ is an unknown population parameter. For example, suppose we are interested in θ , which is the (unknown) population proportion of NTU students, who have a significant other. { X 1 , X 2 , . . . , X n } ∼ i . i . d . Bernoulli ( θ ) Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 3 / 38

  4. Estimation Statistical Inference We would like to find a good guess of the parameter θ : a point estimator. That is, we would like to come up with a random variable θ = δ ( X 1 , X 2 , . . . , X n ) ˆ that we expect to be close to θ . Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 4 / 38

  5. Estimation Estimator Definition Let { X 1 , X 2 , . . . , X n } be a random sample from the joint distribution indexed by a parameter θ ∈ Θ . A function ˆ θ = δ ( X 1 , X 2 , . . . , X n ) is called a point estimator of the parameter θ . Θ is called a parameter space. When X 1 = x 1 , X 2 = x 2 ,..., X n = x n are observed , then δ ( x 1 , x 2 , . . . x n ) is called the point estimate of θ . Every estimator is also a statistic (by nature of being a function of a random sample). Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 5 / 38

  6. Estimation Estimator There can be more than one unknown parameter: { X i } n i = 1 ∼ i . i . d . f ( x , θ 1 , θ 2 , . . . , θ k ) For example, ( θ 1 , θ 2 ) = ( µ , σ 2 ) denotes the (unknown) population mean and variance of the S&P500 stock returns. { X 1 , X 2 , . . . , X n } ∼ i . i . d . N ( µ , σ 2 ) Estimators: θ 1 = ˆ µ = δ 1 ( X 1 , X 2 , . . . , X n ) ˆ σ 2 = δ 2 ( X 1 , X 2 , . . . , X n ) θ 2 = ˆ ˆ Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 6 / 38

  7. Estimation How to Guess? Analogy Principle ( 類 比 原則 ) Method of Moments ( 動 差 法 ) Method of Maximum Likelihood ( 最 大 概 似 法 ) Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 7 / 38

  8. Estimation Analogy Principle To estimate the population mean µ = E ( X ) , use the sample mean X n = 1 ∑ n ¯ X i n i = 1 To estimate the population variance σ 2 = Var ( X ) = E ( X − E ( X )) 2 , use the sample variance σ 2 = 1 ( X i − ¯ X n ) 2 or S 2 n = ( X i − ¯ X n ) 2 ∑ n ∑ n 1 n − 1 ˆ n i = 1 i = 1 In general, to estimate the population moments m j = E ( X r ) , use the sample moments n ∑ 1 X j i n i = 1 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 8 / 38

  9. Estimation Analogy Principle To estimate distribution function F X ( x ) = P ( X ≤ x ) , use the empirical distribution function. F n ( x ) = ∑ n i = 1 I { X i ≤ x } ˆ n Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 9 / 38

  10. Estimation Method of Moments The method of moments is simply an application of analogy principle. Suppose that { X i } n i = 1 ∼ i . i . d . f ( x , θ 1 , θ 2 , . . . , θ k ) j -th population moment, which is a function of unknown parameters E ( X j ) = m j ( θ 1 , θ 2 , . . . , θ k ) Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 10 / 38

  11. Estimation Example For example, let X ∼ Uniform [ θ 1 , θ 2 ] , dx = θ 1 + θ 2 E ( X ) = m 1 ( θ 1 , θ 2 ) = ∫ θ 2 1 θ 2 − θ 1 x 2 θ 1 2 + θ 1 θ 2 + θ 2 E ( X 2 ) = m 2 ( θ 1 , θ 2 ) = ∫ dx = θ 2 θ 2 1 1 x 2 θ 2 − θ 1 3 θ 1 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 11 / 38

  12. Estimation Method of Moments We then find ˆ θ 1 , ˆ θ 2 , . . . , ˆ θ k to solve the following moment condition = m j ( ˆ θ k ) , j = 1, 2, . . . , k , ∑ n 1 X j θ 1 , ˆ θ 2 , . . . , ˆ �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� i n �ÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜ� i = 1 population moments sample moments The solutions: ( ˆ θ 1 , ˆ θ 2 , . . . , ˆ θ k ) are the MM estimators of ( θ 1 , θ 2 , . . . , θ k ) k unknown parameters with k moment conditions Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 12 / 38

  13. Estimation Method of Moments The method of moments involves equating sample moments with population moments. We impose the condition so that the sample moment is equal to the population moment: the moment condition Moment Conditions 𝜄 = 1 𝑞 𝑘 𝑛 𝑘 መ 𝑜 𝑜 ∑ 𝑗=1 𝑌 𝑗 𝐹(𝑌 𝑘 ) = 𝑛 𝑘 (𝜄) 靠近 where θ = ( θ 1 , θ 2 , . . . , θ k ) , ˆ θ = ( ˆ θ k ) θ 1 , ˆ θ 2 , . . . , ˆ Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 13 / 38

  14. Estimation Method of Moments The basic idea behind this form of the method is to: (1) Equate the first sample moment m 1 = 1 n ∑ n i = 1 X i to the first theoretical moment E ( X ) . (2) Equate the second sample moment m 2 = 1 n ∑ n i = 1 X 2 i to the second theoretical moment E ( X 2 ) . (3) Continue equating sample moments m j with the corresponding theoretical moments E ( X j ) , j = 3, 4, . . . until you have as many equations as you have parameters. (4) Solve for the parameters. Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 14 / 38

  15. Estimation Example Let { X i } n i = 1 ∼ i . i . d . U ( θ 1 , θ 2 ) find the MMEs for θ 1 and θ 2 Recall that the moments are E ( X ) = m 1 ( θ 1 , θ 2 ) = θ 1 + θ 2 2 2 + θ 1 θ 2 + θ 2 E ( X 2 ) = m 2 ( θ 1 , θ 2 ) = θ 2 1 3 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 15 / 38

  16. Estimation Example The moment conditions are θ 1 + ˆ ˆ X = 1 X i = E ( X ) = ∑ n θ 2 ¯ �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� n 2 i = 1 m 1 ( ˆ θ 1 , ˆ θ 2 ) 2 + ˆ θ 2 + ˆ ˆ θ 1 ˆ n i = E ( X 2 ) = ∑ θ 2 θ 2 1 X 2 1 n 3 �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� i = 1 m 1 ( ˆ θ 1 , ˆ θ 2 ) Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 16 / 38

  17. Estimation Example We can solve for ˆ θ 1 and ˆ θ 2 as � � � � 3 θ 1 = ¯ X − n ( X i − ¯ X ) 2 ∑ ˆ n i = 1 � � � � 3 θ 2 = ¯ X + ( X i − ¯ X ) 2 ∑ n ˆ n i = 1 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 17 / 38

  18. Estimation Method of Moments: Remarks Note that the Method of Moment Estimator is not unique. Different moment conditions may obtain different estimators. In general, we use the first few moments for simplicity. Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 18 / 38

  19. Estimation Method of Maximum Likelihood Assume { X i } n i = 1 ∼ i . i . d . f ( x , θ ) where f ( ⋅ ) is known but θ is an unknown parameter. Joint pmf/pdf (function of random sample) f ( x 1 , . . . , x n ; θ ) = f ( x 1 ; θ ) ⋯ f ( x n ; θ ) = ∏ f ( x i ; θ ) i We can also call it a likelihood function of θ : L( θ ) = ∏ f ( x i ; θ ) i Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 19 / 38

  20. Estimation Maximum Likelihood Estimator (MLE) The maximum likelihood estimator ˆ θ θ = a rgm a x θ ∈ Θ L( θ ) ˆ To find the value of θ such that the random sample { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } is most likely to be observed. Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 20 / 38

  21. Estimation Example There are 5 balls in the urn. Let µ denote the portion of blue balls in the urn, and 1 − µ be the portion of green balls in the urn. µ is the unknown parameter The random sample is { X 1 , X 2 , . . . , X 1 0 } , where ⎧ ⎪ ⎪ X i = ⎨ 1 If the ball is blue , ⎪ ⎪ ⎩ If the ball is green . 0 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 21 / 38

  22. Estimation Example It is clear that X i ∼ i . i . d . Bernoulli ( µ ) Let Y 1 0 = X 1 + X 2 + ⋯ + X 1 0 = 1 0 ∑ X i i = 1 Y 1 0 represents the number of blue ball, and Y 1 0 ∼ Binomial ( 1 0, µ ) Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 22 / 38

  23. Estimation Likelihood Function Consider the following two possible samples Sample 1: Y 1 0 = 7 P ( Y 1 0 = 7 ) = ( 1 0 7 ) µ 7 ( 1 − µ ) 3 µ 0 0 1/5 0.000786 2/5 0.042467 3/5 0.214991 4/5 0.201327 5/5 0 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 23 / 38

  24. Estimation Likelihood Function Sample 2: Y 1 0 = 2 P ( Y 1 0 = 2 ) = ( 1 0 2 ) µ 2 ( 1 − µ ) 8 µ 0 0 1/5 0.301990 2/5 0.120932 3/5 0.010617 4/5 0.000074 5/5 0 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 24 / 38

  25. Estimation Likelihood Function Sample 1: Y 1 0 = 7 Sample 2: Y 1 0 = 2 n = 7 ) = ( 1 0 n = 2 ) = ( 1 0 P ( S ∗ 7 ) µ 7 ( 1 − µ ) 3 P ( S ∗ 2 ) µ 2 ( 1 − µ ) 8 µ 0 0 0 1/5 0.000786 0.301990 2/5 0.042467 0.120932 3/5 0.214991 0.010617 4/5 0.201327 0.000074 5/5 0 0 Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 25 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend