statistics in lhc phenomenology
play

Statistics in LHC Phenomenology Tilman Plehn MPI f ur Physik & - PowerPoint PPT Presentation

Statistics in LHC Phenomenology Tilman Plehn Searches NeymanPearson Higgs to muons SUSY parameters Markov chains Statistics in LHC Phenomenology Tilman Plehn MPI f ur Physik & University of Edinburgh Bonn, 2/2007 Statistics in


  1. Statistics in LHC Phenomenology Tilman Plehn Searches Neyman–Pearson Higgs to muons SUSY parameters Markov chains Statistics in LHC Phenomenology Tilman Plehn MPI f¨ ur Physik & University of Edinburgh Bonn, 2/2007

  2. Statistics in LHC Outline Phenomenology Tilman Plehn Searches Neyman–Pearson Higgs to muons Maximum signal significance SUSY parameters Markov chains Neyman–Pearson lemma Example: Higgs to muons Supersymmetric parameter space Markov chains

  3. Statistics in LHC Higgs searches — life is tough Phenomenology Tilman Plehn Life at LHC Searches – WBF H → ττ in Standard Model Neyman–Pearson [or MSSM] Higgs to muons – cut analysis promising enough SUSY parameters ⇒ experimentalists at work [for example Atlas–Freiburg–Bonn] Markov chains – neural net better [non-trivially bounded signal regions] – even better with LEP–type event weighting [not just counting experiment] – Higgs discovery channel? ⇒ could we guess such an outcome? [or the opposite] [B. Quayle, ATLAS Higgs meeting, 2003]

  4. Statistics in LHC Neyman–Pearson lemma Phenomenology Tilman Plehn Answer: Neyman–Pearson lemma Searches Neyman–Pearson – correct hypothesis m 1 : Higgs signal Higgs to muons wrong hypothesis m 2 : SM background SUSY parameters – lemma: likelihood ratio p ( d | m 1 ) / p ( d | m 2 ) most powerful estimator Markov chains [lowest probability to mistake right for fluctuation of wrong (type-II error)] – likelihood: for phase–space event p ( d | m ) ∼ |M| 2 [from Monte Carlo] – estimator: plot density with estimator on x axis, cut signal–rich region Application: optimal observables [invite Markus Diehl...] – looking for best way to measure LEP physics – use Neyman–Pearson theorem to construct correlated observables Similar: matrix element method [CDF; DZero] – event likelihood from data and Monte–Carlo [jet–parton identification] – express likelihood of top events as function of m t – maximize probability p ( d | SM , m t ) to measure m t ⇒ likelihood hard to extract from data [single–top]

  5. Statistics in LHC Neyman–Pearson lemma Phenomenology Tilman Plehn Answer: Neyman–Pearson lemma Searches Neyman–Pearson – correct hypothesis m 1 : Higgs signal wrong hypothesis m 2 : SM background Higgs to muons SUSY parameters – lemma: likelihood ratio p ( d | m 1 ) / p ( d | m 2 ) most powerful estimator Markov chains [lowest probability to mistake right for fluctuation of wrong (type-II error)] Optimal significance at parton level [Cranmer, TP] – example: log-likelihood for n -event Poisson statistics [independent channels] Pois ( n | b ) = e − b b n Pois ( n | s + b ) = e − ( s + b ) ( s + b ) n n ! n ! q = log Pois ( n | s + b ) 1 + s 1 + s j „ « „ « X X = − s + n log − → − s j + n j log Pois ( n | b ) b b j j j – independent events with non–trivial distributions j = 1 f ( j ) Pois ( n | s + b ) Q n n 1 + sf ( j ) ! s + b X s q = log = − s + log j = 1 f ( j ) bf ( j ) Pois ( n | b ) Q n j = 1 b b – continuous integration over phase space: s f s → |M s | 2 ! r ) | 2 1 + |M s ( � q ( � r ) = − σ s L + log |M b ( � r ) | 2

  6. Statistics in LHC Neyman–Pearson lemma Phenomenology Tilman Plehn Answer: Neyman–Pearson lemma Searches Neyman–Pearson – correct hypothesis m 1 : Higgs signal wrong hypothesis m 2 : SM background Higgs to muons SUSY parameters – lemma: likelihood ratio p ( d | m 1 ) / p ( d | m 2 ) most powerful estimator Markov chains [lowest probability to mistake right for fluctuation of wrong (type-II error)] Optimal significance at parton level [Cranmer, TP] – from likelihood map q ( � r ) to probability distribution pdf – invert into single–event pdf r d σ b ( � r ) Z ` ´ ρ 1 , b ( q 0 ) = d � δ q ( � r ) − q 0 σ tot , b ρ n , b = ( ρ 1 , b ) n – Fourier–transform and compute n –event pdf: – combine n = 1 , ... into pdf 300 fb -1 ρ b ρ s+b X ρ b ( q ) = Pois ( n | b ) × ρ n , b ( q ) 0.1 n ⇒ integrate to CL b ( q ) = R ∞ dq ′ ρ b ( q ′ ) q 0.05 [5 σ is CLb = 2 . 85 10 − 7] 0 -30 -20 -10 0 10 20 30 q

  7. Statistics in LHC Sub–optimal: detector effects Phenomenology Tilman Plehn Best of all worlds Searches Neyman–Pearson – irreducible & unsmeared: identical signal and background phase space Z Z Higgs to muons d � � � σ tot = dPS M PS d σ PS = r M ( r ) d σ ( r ) SUSY parameters – random numbers � r basis for phase space configurations Markov chains ∆ m width ≪ ∆ m meas ⇒ don’t be ridiculous µµ µµ More realistic – smear observable/random number transfer function W [Gaussian] Z ∞ Z r ⊥ dr ∗ r ) W ( r m , r ∗ d � � � σ tot = dr m M ( r ) d σ ( m ) m −∞ – modified phase–space vector � r = { � r ⊥ , r m } [without back door] – likelihood map over smeared � r ⇒ same procedure as before – complete smearing: replace phase space by set of distributions – lose strict maximum significance claim ⇒ step–by–step into Whizard [Cranmer, TP , Reuter]

  8. Statistics in LHC Example: Higgs to muons Phenomenology Tilman Plehn (min) 1/ σ tot d σ /d ∆ p Weak–boson–fusion Higgs with H → µµ µµ j,j Searches Z QCD Neyman–Pearson – number of signal events small [ σ · BR ∼ 0 . 25 fb ] H Higgs to muons – no distribution with golden cut SUSY parameters ⇒ perfect for multivariate analysis Z ew Markov chains 0 1000 2000 (min) ∆ p µµ j,j [ GeV ] Awful old results [TP , Rainwater] √ σ QCD σ ew L 5 σ [ fb − 1 ] S MH σ H [ fb ] [ fb ] [ fb ] S / B significance △ σ/σ Z Z 14 115 0.25 3.57 0.40 1/9.1 1.7 σ 60 % 2600 14 120 0.22 2.60 0.33 1/7.5 1.8 σ 60 % 2300 14 130 0.17 1.61 0.24 1/6.5 1.7 σ 65 % 2700 14 140 0.10 1.11 0.19 1/7.5 1.2 σ 85 % 4900 200 115 2.57 39.6 5.3 1/10.1 5.3 σ 20 % 270 200 120 2.36 29.2 4.0 1/8.0 5.7 σ 20 % 230 200 130 1.80 18.7 2.7 1/6.9 5.3 σ 20 % 260 200 140 1.14 13.4 2.0 1/7.9 4.0 σ 27 % 500

  9. Statistics in LHC Example: Higgs to muons Phenomenology Tilman Plehn (min) 1/ σ tot d σ /d ∆ p Weak–boson–fusion Higgs with H → µµ µµ j,j Searches Z QCD Neyman–Pearson – number of signal events small [ σ · BR ∼ 0 . 25 fb ] H Higgs to muons – no distribution with golden cut SUSY parameters ⇒ perfect for multivariate analysis Z ew Markov chains 0 1000 2000 (min) ∆ p µµ j,j [ GeV ] Statistical promise – mostly irreducible backgrounds – smearing only relevant for m µµ [mimic by Γ ′ H ?] d σ /dm µµ Z QCD all q 1 – compute likelihood map from matrix elements Z EW → upper limit (target?) on parton–level significance -1 10 H → WBF H → µµ : 3.5 sigma in 300 fb − 1 -2 q > − 1.5 10 [ ∼ 4 . 4 σ with mini-jet veto] – physics: confirm Yukawa coupling -3 10 117 118 119 120 121 122 123 ⇒ maybe, J¨ orn wants to have a look? m µµ [ GeV ]

  10. Statistics in LHC Supersymmetric parameter space Phenomenology Tilman Plehn New physics at the LHC Searches Neyman–Pearson – complex models, including dark matter, flavor physics, low-energy physics,... Higgs to muons – honest parameters: weak-scale Lagrangean SUSY parameters – measurements: masses or edges Markov chains branching fractions cross sections – errors: general correlation, statistics & systematics & theory – problem in grid: huge phase space, local minimum? problem in fit: domain walls, global minimum? [also Fittino: Peter’s talk] First go at problem 10 – ask a friend how SUSY is broken ⇒ mSUGRA 8 – fit m 0 , m 1 / 2 – no problem, include indirect constraints 6 2 (today) – best fit pre-LHC [Ellis, Weinemeyer, Olive, Heiglein] CMSSM, µ > 0 χ 4 tan β = 10, A 0 = 0 ⇒ simple fit tan β = 10, A 0 = +m 1/2 [no theory bias, except they know it is mSUGRA] tan β = 10, A 0 = -m 1/2 2 tan β = 10, A 0 = +2 m 1/2 tan β = 10, A 0 = -2 m 1/2 0 0 200 400 600 800 1000 m 1/2 [GeV]

  11. Statistics in LHC Supersymmetric parameter space Phenomenology Tilman Plehn New physics at the LHC Searches Neyman–Pearson – complex models, including dark matter, flavor physics, low-energy physics,... Higgs to muons – honest parameters: weak-scale Lagrangean SUSY parameters – measurements: masses or edges Markov chains branching fractions cross sections – errors: general correlation, statistics & systematics & theory – problem in grid: huge phase space, local minimum? problem in fit: domain walls, global minimum? [also Fittino: Peter’s talk] First go at problem – ask a friend how SUSY is broken ⇒ mSUGRA – fit m 0 , m 1 / 2 , A 0 , tan β, y t , ... ⇒ best fit to LHC/ILC measurements SPS1a ∆ LHC ∆ LHC ∆ ILC ∆ LHC+ILC masses edges m0 100 3.9 1.2 0.09 0.08 m1 / 2 250 1.7 1.0 0.13 0.11 tan β 10 1.1 0.9 0.12 0.12 A0 -100 33 20 4.8 4.3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend