statistical topological data analysis using persistence
play

Statistical topological data analysis using persistence landscapes - PowerPoint PPT Presentation

Application Theory Analysis Statistical topological data analysis using persistence landscapes applied to brain arteries CANSSISAMSI Workshop: Geometric Topological and Graphical Model Methods in Statistics Peter Bubenik Department of


  1. Application Theory Analysis Statistical topological data analysis using persistence landscapes applied to brain arteries CANSSI–SAMSI Workshop: Geometric Topological and Graphical Model Methods in Statistics Peter Bubenik Department of Mathematics Cleveland State University p.bubenik@csuohio.edu http://academic.csuohio.edu/bubenik_p/ May 23, 2014 funded by AFOSR 1/20 Peter Bubenik Persistence landscapes

  2. Application Theory Analysis Statistical topological data analysis The plan: Geometric Topological Statistical Data object summary analysis 2/20 Peter Bubenik Persistence landscapes

  3. Application Theory Analysis Brain arteries Geometry Topology Brain arteries Joint work with Ezra Miller (Duke/SAMSI), J.S. Marron (UNC-CH), Paul Bendich (Duke) and Sean Skwerer (UNC-CH). 3/20 Peter Bubenik Persistence landscapes

  4. Application Theory Analysis Brain arteries Geometry Topology Brain arteries Goal: Analyze the shape of brain arteries in order to understand normal changes with respect to age detect and locate pathology (tumors) predict stroke risk 3/20 Peter Bubenik Persistence landscapes

  5. Application Theory Analysis Brain arteries Geometry Topology The data Bullitt and Aylward (2002) MRA → Tubes 4/20 Peter Bubenik Persistence landscapes

  6. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  7. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  8. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  9. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  10. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  11. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  12. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  13. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  14. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  15. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  16. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  17. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  18. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  19. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  20. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  21. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  22. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  23. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  24. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  25. Application Theory Analysis Brain arteries Geometry Topology Filling the arteries – increasing sublevel sets 5/20 Peter Bubenik Persistence landscapes

  26. Application Theory Analysis Brain arteries Geometry Topology Mathematical viewpoint Let X be a graph representing the brain arteries of one subject: vertices with ( x , y , z , r ) coordinates edges connecting adjacent vertices 6/20 Peter Bubenik Persistence landscapes

  27. Application Theory Analysis Brain arteries Geometry Topology Mathematical viewpoint Let X be a graph representing the brain arteries of one subject: vertices with ( x , y , z , r ) coordinates edges connecting adjacent vertices Let X t denotes the full subgraph on the vertices with z coordinate at most t . ∅ = X 0 ⊆ X 1 ⊆ X 2 ⊆ · · · ⊆ X N = X Take homology in degree 0. H 0 ( X 0 ) → H 0 ( X 1 ) → H 0 ( X 2 ) → · · · → H 0 ( H N ) 6/20 Peter Bubenik Persistence landscapes

  28. Application Theory Analysis Setup Persistence landscape Mean Banach space More general setup For each t , have a simplicial complex X t a vector space H ( X t ) an inclusion X t ⊆ X t ′ For t ≤ t ′ , have a linear map H ( X t ) → H ( X t ′ ) Persistent homology is the image of this map. This set of vector spaces and linear maps is called a persistence module. We want a summary of the persistence module that is amenable to statistical analysis. 7/20 Peter Bubenik Persistence landscapes

  29. Application Theory Analysis Setup Persistence landscape Mean Banach space Persistence landscape Recall that the persistence module consisted of linear maps H ( X t ) → H ( X t ′ ) , for t ≤ t ′ . For k = 1 , 2 , 3 , . . . , define λ k : R → R by λ k ( t ) = max( h | rank( H ( X t − h ) → H ( X t + h ) ≥ k ) We can combine these to get one function λ : N × R → R , where λ ( k , t ) = λ k ( t ). 8/20 Peter Bubenik Persistence landscapes

  30. Application Theory Analysis Setup Persistence landscape Mean Banach space Persistence landscape examples 9/20 Peter Bubenik Persistence landscapes

  31. Application Theory Analysis Setup Persistence landscape Mean Banach space Persistence landscape examples 9/20 Peter Bubenik Persistence landscapes

  32. Application Theory Analysis Setup Persistence landscape Mean Banach space Persistence landscape examples 9/20 Peter Bubenik Persistence landscapes

  33. Application Theory Analysis Setup Persistence landscape Mean Banach space Persistence landscape examples 9/20 Peter Bubenik Persistence landscapes

  34. Application Theory Analysis Setup Persistence landscape Mean Banach space Persistence landscape examples 9/20 Peter Bubenik Persistence landscapes

  35. Application Theory Analysis Setup Persistence landscape Mean Banach space Mean landscapes n Persistence landscapes, λ (1) , . . . , λ ( n ) , have mean, λ = 1 � λ ( i ) . n i =1 That is, n λ k ( t ) = 1 λ ( i ) � k ( t ) n i =1 10/20 Peter Bubenik Persistence landscapes

  36. Application Theory Analysis Setup Persistence landscape Mean Banach space Mean landscape for brain arteries 12 10 8 6 4 2 0 1020304050 90 100 50 60 70 80 10 20 30 40 11/20 Peter Bubenik Persistence landscapes

  37. Application Theory Analysis Setup Persistence landscape Mean Banach space Summary space � 1 �� p � λ kp Let 1 ≤ p < ∞ . Then � λ � p = . k We assume � λ � := � λ � p < ∞ . That is, λ ∈ L p ( N × R ). So λ is a random variable with values in a Banach space. 12/20 Peter Bubenik Persistence landscapes

  38. Application Theory Analysis Setup Persistence landscape Mean Banach space Asymptotics λ ∈ L p ( N × R ), � λ � is a real random variable. If E � λ � < ∞ then there exists E ( λ ) ∈ L p ( N × R ) such that E ( f ( λ )) = f ( E ( λ )) for all continuous linear functionals f . Theorem (Strong Law of Large Numbers (SLLN)) ( n ) → E ( λ ) almost surely if and only if E � λ � < ∞ . λ Theorem (Central Limit Theorem (CLT)) Assume p ≥ 2 . If E � λ � < ∞ and E ( � λ � 2 ) < ∞ then √ n [ λ ( n ) − E ( λ )] converges weakly to a Gaussian random variable with the same covariance structure as λ . 13/20 Peter Bubenik Persistence landscapes

  39. Application Theory Analysis Setup Persistence landscape Mean Banach space Weighted norms � 1 �� p � λ kp Recall that � λ � p = . k � 1 j � p � � λ kp Fix i ≤ j . Define � λ � p , i , j = . k = i The previous SLLN and CLT also apply to this weighted norm. 14/20 Peter Bubenik Persistence landscapes

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend