statistical methods for understanding complex biophysical
play

Statistical methods for understanding complex biophysical neural - PowerPoint PPT Presentation

Statistical methods for understanding complex biophysical neural data Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/ liam liam@stat.columbia.edu June 27,


  1. Statistical methods for understanding complex biophysical neural data Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/ ∼ liam liam@stat.columbia.edu June 27, 2007

  2. Back to detailed models Can we recover detailed biophysical properties? • Active: membrane channel densities • Passive: axial resistances, “leakiness” of membranes • Dynamic: spatiotemporal synaptic input

  3. Spatiotemporal voltage recordings Djurisic et al, 2004

  4. Conductance-based models Key point: if we observe full V i ( t ) + cell geometry, channel kinetics known + current noise is log-concave, then loglikelihood of unknown parameters is concave. Gaussian noise = ⇒ standard nonnegative regression (albeit high-d).

  5. Estimating channel densities from V ( t ) (Huys et al., 2006)

  6. Estimating channel densities from V ( t ) 0 −20 V −40 −60 50 summed currents dV/dt 0 −50 −100 20 40 60 80 100 Time [ms] conductance [mS/cm 2 ] 100 True Inferred 50 0 NaHH KHH Leak NaM KM NaS KAS

  7. Measuring uncertainty in channel densities

  8. Estimating non-homogeneous channel densities and axial resistances from spatiotemporal voltage recordings

  9. A big cell

  10. A big cell

  11. Estimating synaptic inputs given V ( t )

  12. Estimating synaptic inputs given V ( t ) B A without regularisation with regularisation [mS/cm 2 ] [mV] [mS/cm 2 ] Inh spikes | Voltage | Exc spikes 12 0 −47 −52 −57 23 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Time [s] Time [s]

  13. Estimating synaptic inputs given V ( t ) B A Synaptic conductances Channel conductances 120 True parameters max conductance [mS/cm 2 ] 1 (spikes and conductances) 100 Data (voltage trace) Inferred (MAP) spikes Inferred (ML) channel densities 80 Inh spikes | Voltage [mV] | Exc spikes 60 0 40 20 mV 20 −25 mV 0 HHNa HHK Leak MNa MK SNa SKA SKDR C 1 −70 mV 1 0 20 mV −25 mV −70 mV 1 0 0 1280 1300 1320 1340 1360 1380 1400 0 500 1000 1500 2000 Time [ms] Time [ms]

  14. Estimating stimulus effects dV/dt = I channel + � k · � x ( t ) + σN t A 2 s 1 (t) 0 −2 B 20 0 −20 V −40 −60 C summed currents 150 100 dV/dt 50 0 −50 20 40 60 80 100 Time [ms] D E 120 4 True True 100 3.5 Inferred Inferred conductance 80 3 [mS/cm 2 ] filter 60 2.5 2 40 1.5 20 0 NaHH KHH Leak NaM KM NaS KAS 1 2 3 4 5 6 7 8 9 10

  15. Dealing with incomplete observations: Kalman filter −59.5 V (mV) −60 −60.5 −59.6 E[V(t) | Y(0:t)] −59.8 V (mV) E[V(t) | Y(1:T)] −60 −60.2 −60.4 −60.6 est std (mV) 0.2 0.1 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 t (sec)

  16. Spatiotemporal filtering compartment 5 10 15 compartment 5 10 15 compartment 5 10 15 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 t (sec)

  17. Estimating parameters in the Kalman setting Simulated data: five-compartment model V ( t ), noisy observations 40 20 Voltage [mV] 0 −20 −40 0 1000 2000 Time [ms]

  18. Estimating parameters in the Kalman setting intercompartmental conductance Leak 25 15 20 15 10 10 5 0 10 20 30 0 50 100 150 R Observation noise 2 50 40 1.5 30 20 1 10 0 10 20 30 0 10 20 30 EM iteration EM iteration

  19. Smoothing given nonlinear dynamics — via particle filtering (Huys and Paninski, 2006)

  20. Subsampling and noise

  21. EM estimation via particle filter K Na 100 [mS/cm 2 ] 50 0 0 [mS/cm 2 ] Leak R Voltage [mV] [mS/cm 2 ] 4 2 20 40 60 EM iteration EM iteration

  22. Particle filter to infer calcium from voltage observations

  23. Inferring spike rates from calcium observations (play ohki movie here)

  24. Collaborators Theory and numerical methods — J. Kulkarni, G. Szirtes, G. Fudenberg, K. Rahnama, Columbia — J. Pillow, E. Simoncelli, NYU — S. Shoham, Princeton — A. Haith, C. Williams, Edinburgh — M. Ahrens, Q. Huys, Gatsby — J. Lewi, R. Butera, Georgia Tech Motor cortex physiology — M. Fellows, J. Donoghue, Brown — N. Hatsopoulos, U. Chicago — B. Townsend, R. Lemon, U.C. London Retinal physiology — V. Uzzell, J. Shlens, E.J. Chichilnisky, UCSD Cortical in vitro physiology — B. Lau and A. Reyes, NYU

  25. References Huys, Q., Ahrens, M., and Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology , 96:872–890. Huys, Q. and Paninski, L. (2006). Model-based optimal interpolation and filtering for noisy, intermittent biophysical recordings. CNS*06 Meeting, Edinburgh .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend