statistical inference for incomplete
play

Statistical inference for incomplete Ins Couso ranking data: A - PowerPoint PPT Presentation

DA2PL 2016 Paderborn, Nov 7, 2016 Statistical inference for incomplete Ins Couso ranking data: A comparison of two Mohsen Ahmadi likelihood-based estimators Eyke Hllermeier Statement of the problem Sample of N individuals. K


  1. DA2PL 2016 Paderborn, Nov 7, 2016 Statistical inference for incomplete Inés Couso ranking data: A comparison of two Mohsen Ahmadi likelihood-based estimators Eyke Hüllermeier

  2. Statement of the problem ❖ Sample of N individuals. ❖ K alternatives. ❖ Every individual provides a pairwise comparisons. ❖ Goal: estimate the most popular complete ranking over the K alternatives. ❖ Intermediate goal: estimate the probability distribution over the collection of K! possible rankings.

  3. Notation • Alternatives: a 1 , . . . , a K . • Complete ranking: π : { 1 , . . . , K } ! { 1 , . . . , K } • π ( i ) = position of a i in the ranking. • Observable incomplete rankings: a i � a j . • E ( a i � a j ) = { π : π ( i ) < π ( j ) } . • Dataset: ( τ 1 , . . . , τ N ), sequence of i.i.d. observations (pairwise rankings).

  4. A stochastic model of coarsening • p θ ( π ) = probability of appearance of π (complete ranking). • p λ ( τ | π ) = probability of observing τ , provided the true ranking is π . • p θ , λ ( π , τ ): joint mass function.

  5. Two likelihood-based approaches N Y L V ( ✓ , � ) = P ( ~ ⌧ | ✓ , � ) = P ( Y = ⌧ i | ✓ , � ) i =1 N Y X = p θ ( ⇡ ) p λ ( ⌧ i | ⇡ ) . i =1 π ∈ S K N Y L F ( ✓ , � ) = P ( X ∈ E ( ⌧ i ) | ✓ , � ) i =1 N Y X = p θ ( ⇡ ) . i =1 π ∈ E ( τ i )

  6. Plackett-Luce parametric family • Parameter θ = ( θ 1 , . . . , θ K ) . θ π − 1( i ) • PL θ ( { π } ) = Q K θ π − 1( i ) + θ π − 1( i +1) + ... + θ π − 1( K ) . i =1 • π ∗ = arg max π ∈ S K PL θ ( π ) = arg sort k ∈ [K] { θ 1 , . . . , θ K } . (If, for instance, θ 1 > . . . > θ K then π ∗ = [1 . . . k ] . ) θ i • PL θ ( E ( a i � a j )) = θ i + θ j .

  7. Known coarsening: example a 1 a 2 a 2 a 1 a 1 a 3 a 3 a 1 a 2 a 3 a 3 a 2 0 0 0 0 1 0 a 1 a 2 a 3 0 0 0 0 0 1 a 1 a 3 a 2 0 1 0 0 0 0 a 2 a 1 a 3 0 1 0 0 0 0 a 2 a 3 a 1 0 0 0 1 0 0 a 3 a 1 a 2 0 1 0 0 0 0 a 3 a 2 a 1 ⌘ n ij ⇣ ⌧ ; ✓ ) = Q 3 θ i Q L F ( ~ . i =1 j 6 = i θ i + θ j ✓ = (0 . 99 , 0 . 0 . 5 , 0 . 05) ˆ ✓ = arg max L F ( ~ ⌧ ; ✓ ) − → (0 , 0 . 5 , 0 . 5) .

  8. Unknown coarsening a 1 a 2 a 2 a 1 a 1 a 3 a 3 a 1 a 2 a 3 a 3 a 2 λ π 1 λ π 1 λ π 1 π 1 = a 1 a 2 a 3 0 0 0 1 , 2 1 , 3 2 , 3 λ π 2 λ π 2 λ π 2 π 2 = a 1 a 3 a 2 0 0 0 1 , 3 1 , 2 2 , 3 λ π 3 λ π 3 λ π 3 π 3 = a 2 a 1 a 3 0 0 0 1 , 2 2 , 3 1 , 3 λ π 4 λ π 4 λ π 4 π 4 = a 2 a 3 a 1 0 0 0 1 , 3 2 , 3 1 , 2 λ π 5 λ π 5 λ π 5 π 5 = a 3 a 1 a 2 0 0 0 2 , 3 1 , 2 1 , 3 λ π 6 λ π 6 λ π 6 π 6 = a 3 a 2 a 1 0 0 0 2 , 3 1 , 3 1 , 2 ✓ ◆ K Number of unknowns: 2 K ! . 2

  9. Rank-dependent coarsening assumption a 1 a 2 a 2 a 1 a 1 a 3 a 3 a 1 a 2 a 3 a 3 a 2 λ 1 , 2 λ 1 , 3 λ 2 , 3 0 0 0 a 1 a 2 a 3 λ 1 , 3 λ 1 , 2 λ 2 , 3 0 0 0 a 1 a 3 a 2 λ 1 , 2 λ 2 , 3 λ 1 , 3 0 0 0 a 2 a 1 a 3 λ 1 , 3 λ 2 , 3 λ 1 , 2 0 0 0 a 2 a 3 a 1 λ 2 , 3 λ 1 , 2 λ 1 , 3 0 0 0 a 3 a 1 a 2 λ 2 , 3 λ 1 , 3 λ 1 , 2 0 0 0 a 3 a 2 a 1 K ( K − 1) Number of unknowns: − 1 . 2 The FLM is able to estimate the mode of the PL model. (a.s. and provided N is su ffi ciently large).

  10. Three experimental settings 0.5 0.35 ❖ The MLM (solid), the FLM 0.45 0.3 0.4 0.25 0.35 (dashed) and the TLM (dotted) 0.3 0.2 0.25 0.15 0.2 are compared. 0.15 0.1 0.1 0.05 0.05 0 0 ❖ Three different coarsening 0 500 1000 1500 2000 0 500 1000 1500 2000 processes are considered. 0.4 0.25 0.35 0.2 0.3 0.25 ❖ The same PL parameter is taken 0.15 0.2 0.1 0.15 in the three cases. 0.1 0.05 0.05 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000 ❖ Left column: Euclidean distance 0.45 0.35 0.4 true par. - par. estimate. 0.3 0.35 0.25 0.3 0.2 0.25 ❖ Right column: Kendall distance 0.2 0.15 0.15 0.1 0.1 true mode - predicted ranking. 0.05 0.05 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000

  11. Case 1: uniform selection of pairwise comparison 0.5 0.35 0.45 0.3 0.4 0.25 0.35 0.3 0.2 0.25 0.15 0.2 0.15 0.1 0.1 0.05 0.05 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000 set λ 1 , 2 = . . . = λ 3 , 4 = 1 / 6 . selected uniformly at random. In

  12. Case 2: top 2 case 0.4 0.25 0.35 0.2 0.3 0.25 0.15 0.2 0.1 0.15 0.1 0.05 0.05 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000 xperiment, λ 1 , 2 = 1 corresponds to the top-2

  13. Case 3: rank proportional selection 0.45 0.35 0.4 0.3 0.35 0.25 0.3 0.2 0.25 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000 ranks: λ i,j ∝ (8 − i − j ) . with a higher probability than

  14. Conclusion ❖ MLM is theoretically the best one, but it involves to many parameters. ❖ FML is simpler, but it ignores the coarsening process. It may lead to biased estimations. ❖ Biased estimations of the parameter do not imply non- accurate predictions of the most popular ranking. ❖ Future directions: search for computational acceptable methods with a good performance.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend