staircase diagrams and the enumeration of smooth schubert
play

Staircase diagrams and the enumeration of smooth Schubert varieties - PowerPoint PPT Presentation

Staircase diagrams and the enumeration of smooth Schubert varieties Edward Richmond* and William Slofstra Oklahoma State University* University of Waterloo July 4, 2016 Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 1 / 16


  1. Staircase diagrams and the enumeration of smooth Schubert varieties Edward Richmond* and William Slofstra Oklahoma State University* University of Waterloo July 4, 2016 Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 1 / 16

  2. Let Γ be a Dynkin diagram of finite type with vertex set S = { s 1 , . . . , s n } . Let D be a collection of subsets of S . Type A Dynkin diagram: s 1 s 2 s n − 1 s n Type A example: D = { [ s 1 , s 3 ] , [ s 2 , s 4 ] , [ s 3 , s 5 ] , [ s 6 ] , [ s 7 , s 9 ] , [ s 9 , s 10 ] , [ s 10 , s 11 ] } 3 4 5 10 11 2 3 4 6 9 10 1 2 3 7 8 9 For any s ∈ S , define D s := { B ∈ D | s ∈ B } . D s 3 = { [ s 1 , s 3 ] , [ s 2 , s 4 ] , [ s 3 , s 5 ] } Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 2 / 16

  3. Definition: We say a partially ordered set ( D , ≺ ) is a staircase diagram over Γ if Each B ∈ D is connected. If B covers B ′ , then B ∪ B ′ is connected. For each s ∈ S , D s is a saturated chain. If s adj t , then D s ∪ D t is a chain. Each is B ∈ D is maximal (resp. minimal) in D s for some s ∈ S . Type A example: 3 4 5 10 11 2 3 4 6 9 10 1 2 3 7 8 9 { [ s 1 , s 3 ] ≺ [ s 2 , s 4 ] ≺ [ s 3 , s 5 ] ≻ [ s 6 ] ≻ [ s 7 , s 9 ] ≺ [ s 9 , s 10 ] ≺ [ s 10 , s 11 ] } Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 3 / 16

  4. Type D examples: s 1 s 2 s 3 s 4 s 5 2 3 3 4 5 2 31 4 31 2 3 4 5 { [ s 1 , s 3 ] ≺ [ s 3 , s 5 ] ≺ [ s 2 , s 3 ] } { [ s 2 , s 5 ] ≺ ([ s 2 , s 4 ] ∪ { s 1 } ) } Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 4 / 16

  5. Non-example 1: 2 3 4 0 1 2 3 4 5 Violates: If s adj t , then D s ∪ D t is a chain. Each is B ∈ D is maximal (resp. minimal) in D s for some s ∈ S . Non-example 2: 2 3 4 5 31 4 Violates: For each s ∈ S , D s is a saturated chain. Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 5 / 16

  6. Let G be a finite-type Lie group with Weyl group ( W, S ) and Dynkin diagram Γ . For any J ⊆ S , let u J denote the maximal element in W J . Let D be a staircase diagram on Γ . For any B ∈ D , define J ( B ) := { s ∈ B | B � = min D s } Example: 2 3 4 5 6 1 2 3 6 7 J ([ s 2 , s 6 ]) = { s 2 , s 3 , s 6 } For each B ∈ D , define λ ( B ) := u B u J ( B ) ∈ W. Remark: λ ( B ) is the maximal element of W B ∩ W J ( B ) Remark: The map λ : D → W is called the maximal labelling of D . Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 6 / 16

  7. Definition: Let ( B 1 < B 2 < · · · < B n ) be a linear extension of D . Define Λ( D ) := λ ( B n ) · λ ( B n − 1 ) · · · λ ( B 1 ) . If B, B ′ are incomparable, then they are disjoint and non-adjacent. Thus λ ( B ) , λ ( B ′ ) commute and hence Λ( D ) is well defined. Example: Let D = { [ s 1 , s 3 ] , [ s 5 , s 6 ] , [ s 2 , s 5 ] } . 2 3 4 5 1 2 3 5 6 Then λ ([ s 1 , s 3 ]) = s 1 s 2 s 3 s 1 s 2 s 1 , λ ([ s 5 , s 6 ]) = s 5 s 6 s 5 , λ ([ s 2 , s 5 ]) = ( s 3 s 2 s 4 s 3 s 5 s 4 s 5 s 2 s 3 s 2 )( s 2 s 3 s 2 s 5 ) = s 3 s 2 s 4 s 3 s 5 s 4 and Λ( D ) = ( s 3 s 2 s 4 s 3 s 5 s 4 )( s 5 s 6 s 5 )( s 1 s 2 s 3 s 1 s 2 s 1 ) . Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 7 / 16

  8. Define D R ( D ) := { s ∈ S | s is not a “lower inner corner” of D} . Ex: 2 3 4 5 6 1 2 7 D R ( D ) = { s 1 , s 2 , s 4 , s 5 , s 7 } . Let flip( D ) denote the staircase diagram D with the reserve partial order. Ex: 2 3 4 5 1 2 3 6 1 2 3 6 2 3 4 5 Coxeter group properties of Λ( D ) : R-Slofstra (arXiv15) ℓ (Λ( D )) = ℓ ( λ ( B 1 )) + · · · + ℓ ( λ ( B n )) D R ( D ) is the right-decent set of Λ( D ) Λ( D ) − 1 = Λ(flip( D )) Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 8 / 16

  9. Connection with geometry: Let G be a finite group with Weyl group W and let X ( w ) ⊆ G/B denote the Schubert variety indexed by w ∈ W . Let Γ denote the Dynkin diagram of G . Theorem: R-Slofstra (arXiv15) If G is a simply-laced, then the map D �→ X (Λ( D )) defines a bijection: � � � � ⇒ staircase diagrams over Γ smooth Schubert varieties in G/B If λ : D → W is a (rationally) smooth labelling, then define Λ( D , λ ) ∈ W accordingly. Theorem: R-Slofstra (arXiv15) If G is of finite type, then the map D �→ X (Λ( D , λ )) defines a bijection: � � � � staircase diagrams over Γ (rationally) smooth Schubert ⇒ with (rationally) smooth labellings varieties in G/B Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 9 / 16

  10. Theorem: Ryan (87), Wolper (89), R-Slofstra (arVix14) (Rationally) smooth Schubert varieties are iterated fiber bundles of (rationally) smooth “Grassmannian Schubert varieties”. (Rationally) smooth Grassmannian Schubert varieties are classified. Let P ⊆ G and consider the fibration P/B ֒ → G/B ։ G/P. The labelling map Λ( D ) = λ ( B n ) · Λ( D \ { B n } ) corresponds to a fibration of Schubert varieties → X (Λ( D )) ։ X P ( λ ( B n )) X (Λ( D \ { B n } )) ֒ Where the parabolic P is defined by the support of D \ { B n } in S . Example: 2 3 4 5 1 2 3 5 6 The support of D \ { B 3 } is { s 1 , s 2 , s 3 } ⊔ { s 5 , s 6 } . Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 10 / 16

  11. Application to enumeration: Define generating series ∞ ∞ ∞ � � � a n t n , b n t n , c n t n , A ( t ) := B ( t ) := C ( t ) := n =0 n =0 n =0 ∞ ∞ � � d n t n , bc n t n , D ( t ) := BC ( t ) := n =3 n =0 where the coefficients a n , b n , c n , d n denote the number of smooth Schubert varieties of types A n , B n , C n , D n respectively, and bc n denotes the number of rationally smooth Schubert varieties of type B n or C n . Theorem: Haiman (90s), Bona (98), R-Slofstra (arXiv15) Let W ( t ) := � w n t n where W = A , B , C , D , or BC . Then P W ( t ) + Q W ( t ) √ 1 − 4 t W ( t ) = (1 − t ) 2 (1 − 6 t + 8 t 2 − 4 t 3 ) for some polynomials P W ( t ) and Q W ( t ) . Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 11 / 16

  12. Theorem: Haiman (90s), Bona (98), R-Slofstra (arXiv15) P W ( t ) Q W ( t ) Type (1 − 4 t )(1 − t ) 3 t (1 − t ) 2 A (1 − 5 t + 5 t 2 )(1 − t ) 3 (2 t − t 2 )(1 − t ) 3 B 1 − 7 t + 15 t 2 − 11 t 3 − 2 t 4 + 5 t 5 t − t 2 − t 3 + 3 t 4 − t 5 C ( − 4 t + 19 t 2 + 8 t 3 − 30 t 4 + 16 t 5 )(1 − t ) 2 (4 t − 15 t 2 + 11 t 3 − 2 t 5 )(1 − t ) D 1 − 8 t + 23 t 2 − 29 t 3 + 14 t 4 2 t − 6 t 2 + 7 t 3 − 2 t 4 BC a n b n c n d n bc n n = 1 2 2 2 2 n = 2 6 7 7 8 n = 3 22 28 28 22 34 n = 4 88 116 114 108 142 n = 5 366 490 472 490 596 n = 6 1552 2094 1988 2164 2530 n = 7 6652 9014 8480 9474 10842 n = 8 28696 38988 36474 41374 46766 Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 12 / 16

  13. Asymptotics: The smallest singularity of W ( t ) is the root √ √ α := 1 � � � � 3 3 4 − 17 + 3 33 + − 17 + 3 33 ≈ 0 . 228155 6 of the polynomial 1 − 6 t + 8 t 2 − 4 t 3 appearing in the denominator. Corollary: R-Slofstra (arXiv15) Let W ( t ) = � w n t n , where W = A , B , C , D , or BC . Then w n ∼ W α α n +1 , where W α := lim t → α ( α − t ) W ( t ) . In particular, w n +1 = α − 1 ≈ 4 . 382985 lim w n n →∞ A B C D BC W α ≈ 0 . 045352 0 . 062022 0 . 057301 0 . 067269 0 . 073972 Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 13 / 16

  14. Proof of enumeration: We say a staircase diagram D is elementary if: The support of D is connected. If |D s | = 1 , then s is a leaf of the support. Examples: 6 7 8 5 6 7 3 4 2 3 4 5 4 5 31 4 5 5 6 Step 1: Decompose a staircase diagram into elementary diagrams. 5 6 7 5 6 6 7 1 2 1 2 4 5 7 8 → 4 5 7 8 2 3 2 3 4 8 9 3 4 8 9 Step 2: Count elementary diagrams. Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 14 / 16

  15. Key observation: Elementary diagrams “grow” recursively at the rate of Catalan numbers! 2 3 1 2 3 4 2 3 4 2 3 1 2 3 1 2 4 5 3 4 5 4 5 3 4 5 2 3 4 5 3 4 2 3 4 2 3 4 2 3 4 1 2 3 4 2 3 1 2 3 1 2 3 1 2 1 2 1 � 2 n � Step 3: Use the generating series for Catalan numbers. Let c n := and n +1 n c n t n = 1 − √ 1 − 4 t ∞ � Cat ( t ) := . 2 t n =0 Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 15 / 16

  16. Further directions: Analogous enumerative results hold for affine type A (R-Slofstra, in progress). Example: 0 5 6 7 0 0 1 2 7 0 1 2 3 4 5 What about other affine classical Lie types? Kac-Moody types? Find a generating series for the number of staircase diagrams over the Dynkin diagrams of E n . Thanks! Richmond-Slofstra (OSU-Waterloo) Staircase diagrams July 4, 2016 16 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend