stability and output regulation for a cascaded network of
play

Stability and output regulation for a cascaded network of 2 2 - PowerPoint PPT Presentation

Stability and output regulation for a cascaded network of 2 2 hyperbolic systems with PI control Ngoc-Tu TRINH, Vincent ANDRIEU and Cheng-Zhong XU Laboratory LAGEP, Batiment CPE, University of Claude Bernard Lyon 1 , 43 Boulevard du 11


  1. Stability and output regulation for a cascaded network of 2 × 2 hyperbolic systems with PI control Ngoc-Tu TRINH, Vincent ANDRIEU and Cheng-Zhong XU Laboratory LAGEP, Batiment CPE, University of Claude Bernard Lyon 1 , 43 Boulevard du 11 novembre 1918, F-69622, Villeurbanne Cedex, France 24 Mars 2017 Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 1 / 35

  2. Plan Introduction 1 Statement of the problem and main result 2 Lyapunov techniques and the proof of the main result 3 Application for Saint Venant model 4 Conclusions 5 Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 2 / 35

  3. Introduction 1 Introduction PDE hyperbolic systems and cascaded networks Boundary control problem Output regulation problem PI control design Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 3 / 35

  4. Introduction PDE hyperbolic systems and cascaded networks Engineering applications of PDE hyperbolic systems Hydraulic engineering - Saint Venant models Road traffic - Burgers equation Gas pipeline Heat exchanger process · · · Homogeneous first-order hyperbolic systems Let φ ∈ R n , A ( φ ) ∈ R n × n , x ∈ [0 , L ], t ∈ R + , φ t + A ( φ ) φ x = 0 , φ (0 , x ) = φ 0 ( x ) A has n real eigenvalues, i.e λ i ∈ R ∀ i = 1 , 2 , .. n . If A is independent on φ , system is linear. If not, it is quasi-linear. Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 4 / 35

  5. Introduction PDE hyperbolic systems and cascaded networks Cascaded network Popular in practical applications (channels of rivers, gas, · · · ) n PDE hyperbolic sub-systems n + 1 junctions, 2 free junctions and n − 1 mixed junctions. Figure : Cascaded network of n systems A cascaded network can be considered a large PDE hyperbolic system with complex boundary conditions ! Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 5 / 35

  6. Introduction Boundary control problem Boundary conditions � � f φ (0 , t ) , φ ( L , t ) , U ( t ) = 0 U ( t ) is control action on the boundary. Static control, i.e U ( t ) = g ( φ (0 , t ) , φ ( L , t )). Dynamic control, i.e U ( t ) = g ( φ (0 , t ) , φ ( L , t )) + other dynamic parts . Boundary control problem Find boundary conditions such that : The PDE hyperbolic system has a unique solution in the corresponding state space. The PDE hyperbolic system is (globally/locally) asymptotically/exponentially stable w.r.t some equilibrium point. Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 6 / 35

  7. Introduction Boundary control problem Static control laws Literatures : (Li Tatsien 1994, Coron et al. 2015) A sufficient boundary condition for the ’zero-point’ stability of quasi-linear systems in C 1 norm. (Coron et al. 2008) A sufficient boundary condition for the ’zero-point’ stability of quasi-linear systems in H 2 norm. (Hale and Verduyn Lune 1993) A necessary and sufficient boundary condition for the ’zero-point’ stability of linear systems in L 2 norm. Limits : Not robust with constant perturbations. Dynamic control laws with integral actions Literatures with works of Pohjolainen, Xu, Dos Santos, C. Prieur, D. Georges,... Advantages : Robust to constant perturbations. Limits : Become a coupling systems of PDE and ODE, difficult to prove stability. Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 7 / 35

  8. Introduction Output regulation problem Given a system one wants to ensure that outputs y ( t ) follow references y r despite disturbances, i.e y ( t ) → y r Figure : Example of Disturbances Figure : Static error Disturbances in real model : error of the modelisation, linearisation, sensors, · · · ⇒ Static error between the measurement output and the set-point. Solution : using the integral action to eliminate the static error. Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 8 / 35

  9. Introduction Output regulation problem Example : A very trivial system : ˙ φ = u + d y = φ State φ ∈ R , control u ∈ R , unknown constant disturbance d ∈ R , measure y ∈ R . Objective : Given a reference y r in R , design u such that y → y r . If u = − ( y − y r ) ⇒ equilibrium is stable but y � y r . If u = − ( y − y r ) − z , where ˙ z = y − y r ⇒ equilibrium is stable and y → y r . Conclusion : The integral term added rejects the constant disturbance. Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 9 / 35

  10. Introduction PI control design PI controller is a type of dynamic boundary control law : u ( t ) = K P ( y ( t ) − y r ) + K I z ( t ) , ˙ z = y ( t ) − y r Measured output on the boundary y ( t ) = g ( φ (0 , t ) , φ ( L , t )) Input u ( t ), reference y r Gain parameter matrices K p , K I . Schema of closed-loop system : Objective : Design PI controller (determine K P and K I ) such that : Stability of closed-loop system Output regulation : y ( t ) → y r Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 10 / 35

  11. Statement of the problem and main result Plan Introduction 1 Statement of the problem and main result 2 Lyapunov techniques and the proof of the main result 3 Application for Saint Venant model 4 Conclusions 5 Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 11 / 35

  12. Statement of the problem and main result Network model n PDE hyperbolic systems  ∂ t φ i 1 ( x , t ) + λ i 1 ∂ x φ i 1 ( x , t ) = 0  , x ∈ [0 , L ] , t ∈ [0 , ∞ ) , i = 1 , n ∂ t φ i 2 ( x , t ) − λ i 2 ∂ x φ i 2 ( x , t ) = 0  where two states φ i 1 , φ i 2 : [0 , L ] × [0 , ∞ ) → R and λ i 1 > 0, λ i 2 > 0. Boundary conditions defined at junctions � φ i 2 ( L , t ) = R i 2 φ i 1 ( L , t ) + u i ( t ) , i = 1 , n φ i 1 (0 , t ) = R i 1 φ i 2 (0 , t ) + α i φ ( i − 1)1 ( L , t ) + δ i φ ( i − 1)2 ( L , t ) , where φ 01 = φ 02 = 0. n measured outputs y i ( t ) = a i φ i 1 ( L , t ) + b i φ i 2 ( L , t ) + y ir Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 12 / 35

  13. Statement of the problem and main result PI structure and state space Design n PI controllers at each juctions u i ( t ) = K iP ( y i ( t ) − y ir ) + K iI z i ( t ) , ˙ z i = y i ( t ) − y ir K iP ∈ R and K iI ∈ R to be designed. Consider the state space of closed-loop network : ( L 2 (0 , L )) 2 × R � n � E = with the norm associated n � � || Y || 2 � || φ i 1 ( ., t ) || 2 L 2 (0 , L ) + || φ i 2 ( ., t ) || 2 L 2 (0 , L ) + z 2 E = i ( t ) i =1 where Y = ( φ 11 , φ 12 , z 1 , · · · , φ n 1 , φ n 2 , z n ) ∈ E Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 13 / 35

  14. Statement of the problem and main result Main result Two hypothesises H 1 : a i � = 0 ∀ i = 1 , n H 2 : a i + b i R i 2 � = 0 ∀ i = 1 , n Theorem (Trinh-Andrieu-Xu 2017) There exists µ ∗ > 0 such that, if two hypothesises H 1 and H 2 are satisfied, for each µ ∈ (0 , µ ∗ ) and , K iI = − µ ( b i + a i R i 1 e µ L )( a i + b i R i 2 ) K iP = − R i 2 , ∀ i = 1 , n a i a i Then, we have : Existence and uniqueness of solutions in E The exponential stability of ’zero’ point in E . ( H 1 (0 , L )) 2 × R � n , Output regulation, i.e � With initial conditions in t →∞ | y i ( t ) − y ir | = 0 , ∀ i = 1 , n . lim Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 14 / 35

  15. Statement of the problem and main result About the theorem y i ( t ) = a i φ i 1 ( L , t ) + b i φ i 2 ( L , t ) + y ir , K iI = − µ ( b i + a i R i 1 e µ L )( a i + b i R i 2 ) K iP = − R i 2 , ∀ i = 1 , n a i a i Two output conditions (two hypothesises) for our PI control design : H 1 for existence of our PI controller. a i � = 0 ∀ i = 1 , n H 2 for having dynamic feedback (by integral action) , i.e K iI � = 0. a i + b i R i 2 � = 0 ∀ i = 1 , n Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 15 / 35

  16. Lyapunov techniques and the proof of the main result Introduction 1 Statement of the problem and main result 2 Lyapunov techniques and the proof of the main result 3 Application for Saint Venant model 4 Conclusions 5 Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 16 / 35

  17. Lyapunov techniques and the proof of the main result Lyapunov candidate functional Use Lyapunov techniques ⇔ construct a candidate Lyapunov function. n � V ( φ 11 , φ 12 , z 1 , · · · , φ n 1 , φ n 2 , z n ) = p i V i i =1 where T  φ i 1 e − µ x   φ i 1 e − µ x  � L 2 2 µ x µ x V i ( φ i 1 , φ i 2 , z i ) =   P i    dx φ i 2 e φ i 2 e 2 2    0 z i z i with   1 0 q i 3 P i = 0 q i 1 q i 4   q i 3 q i 4 q i 2 Here p i > 0 and q i 1 , q i 2 , q i 3 , q i 4 need to be designed. Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 17 / 35

  18. Lyapunov techniques and the proof of the main result Lyapunov candidate functional T   φ i 1 e − µ x   φ i 1 e − µ x   � L 1 0 q i 3 n 2 2 � µ x µ x V = p i 0 q i 1 q i 4  dx     φ i 2 e φ i 2 e 2 2      0 q i 3 q i 4 q i 2 i =1 z i z i If q i 2 = q i 3 = q i 4 = 0, this is the Lyapunov functionnal of Bastin, Coron and Andr´ ea Novel 2009 for a cascaded network. If n = 1 and q i 3 = q i 4 = 0, this is the Lyapunov functionnal of Bastin and Coron 2016 for a single system. By adding the new terms ( q i 3 , q i 4 � = 0) and n positive parameters p i , it allows to deal with dynamic feedback of cascaded network of n systems. Ngoc-Tu TRINH Groupe de travail PIC 24 Mars 2017 18 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend