srg and valence space renormalization of the 0 decay
play

SRG and Valence-Space Renormalization of the 0 Decay Operator - PowerPoint PPT Presentation

Canadas national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nuclaire et en physique des particules SRG and Valence-Space Renormalization of the 0 Decay Operator TRIUMF


  1. Canada’s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules SRG and Valence-Space Renormalization of the 0 νββ Decay Operator TRIUMF Workshop on “Interfacing theory and experiment for reliable double-beta decay matrix element calculations” 4 A=7 Vancouver, Canada, May 11-13, 2016. 2 0 Petr Navratil | TRIUMF -2 A=8 full 1.2 O bare + H eff O eff + H eff -1 ] 0.6 C(r) [fm 0 -0.6 1.5 A=10 1 0.5 0 Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne -0.5 0 5 10 Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada r [fm] Propriété d’un consortium d’universités canadiennes, géré en co-entreprise à partir d’une contribution administrée par le Conseil national de recherches Canada

  2. Outline § Motivation § Ab initio in nuclear physics § No-core shell model § GT transitions in 6 He quenching § SRG evolution of operators § Okubo-Lee-Suzuki renormalization of operators in the valence space § Neutrinoless double beta decay toy model § Outlook

  3. M 0 νββ (or any other) operator renormalization • (i) Renormalization due to missing short-range correlations – Applies to many ab initio techniques • NCSM, CCM, IM-SRG … – Applies also to phenomenological approaches using effective interactions – SRG is the tool to do the renormalization (surely if SRG evolved interactions are used) • (ii) Renormalization due to the valence space truncation – This is typically on top of the short-range renormalization (i) – Ab initio : Valence space IM-SRG, CCEI, NCSM with core, MBPT – Phenomenology (SM, IBM): effective charges, quenching, MBPT … 3

  4. Ab initio calculations in nuclear physics INPUT: Realistic inter-nucleon interactions ² All nucleons are active from chiral perturbation theory ² Exact Pauli principle (N 3 LO) NN+ (N 2 LO) 3N ² Realistic inter-nucleon interactions ² Accurate description of NN (and 3N) data ² Controllable approximations Softening of chiral NN+3N interactions by similarity renormalization group (SRG) unitary transformations: Induce significant 3N interactions Induced 4N and higher much less important + ⇒ dH α ( ) " $ % α = 1 [ ] , H α H α = U α HU α T , H α d α = # λ 4 4

  5. No-core shell model with continuum • No-core shell model (NCSM) N = N 1 max + – A -nucleon wave function expansion in the harmonic-oscillator (HO) basis – short- and medium range correlations A N max – Bound-states, narrow resonances Ψ A = ∑ ∑ A c Ni Φ Ni N = 0 i d  r γ v (  Ψ ( A ) = ˆ ∑ ∑ ∫ c λ , λ + r ) A ν , ν λ ν 5 Unknowns

  6. Calculations with chiral 3N: SRG renormalization needed − 24 • Chiral N 3 LO NN plus N 2 LO NNN bare (36) 4 He potential SRG (2.0/28) − 25 – Bare interaction (black line) • Strong short-range correlations 3 LO (500 MeV) − 26 E [MeV] N § Large basis needed NN + NNN – SRG evolved effective − 27 interaction (red line) • Unitary transformation − 28 + ⇒ dH α ( ) " % α = 1 $ H α = U α HU α [ T , H α ] , H α d α = # λ 4 • Two- plus three -body − 29 2 4 6 8 10 12 14 16 18 20 22 components, four -body N max omitted • Softens the interaction § Smaller basis sufficient A =3 binding energy and half life constraint c D =-0.2, c E =-0.205, Λ =500 MeV

  7. Similarity Renormalization Group (SRG) evolution • Continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis + = U α + U α = 1 + U α U α • Unitary transformation H α = U α HU α + + dH α d α = dU α + + U α H dU α d α = dU α dU α + + U α HU α + U α HU α + U α d α HU α d α U α d α + = dU α dU α η α ≡ dU α + = − η α + H α + H α U α [ ] d α U α d α = η α , H α + d α U α anti-Hermitian generator • Setting with Hermitian [ ] G α η α = G α , H α dH α ! # [ ] , H α G α , H α d α = " $ • Customary choice in nuclear physics … kinetic energy operator G α = T – band-diagonal in momentum space plane-wave basis λ 2 = 1/ α • Initial condition H α = 0 = H λ = ∞ = H 7

  8. Light nuclei with SRG evolved interactions NN only NN + 3N-induced NN + 3N-full (a) (b) (c) -23 4 He -24 � Ω = 20 MeV E gs [MeV] -25 -26 -27 • Fast convergence -28 exp. • Significant 3N induced -29 . interaction -22 (d) (e) (f) • No 4N induced 6 Li interaction -24 � Ω = 20 MeV E gs [MeV] -26 -28 -30 -32 exp. . -34 2 4 6 8 10 12 14 ∞ 2 4 6 8 10 12 14 ∞ 2 4 6 8 10 12 14 ∞ N max N max N max � ● ★ � � α = 0 . 04 fm 4 α = 0 . 05 fm 4 α = 0 . 0625 fm 4 α = 0 . 08 fm 4 α = 0 . 16 fm 4 Λ = 2 . 24 fm − 1 Λ = 2 . 11 fm − 1 Λ = 2 . 00 fm − 1 Λ = 1 . 88 fm − 1 Λ = 1 . 58 fm − 1

  9. 6 He half-life Precision measurement of 6 He beta decay PHYSICAL REVIEW C 86 , 035506 (2012) Precision measurement of the 6 He half-life and the weak axial current in nuclei A. Knecht, 1,* R. Hong, 1 D. W. Zumwalt, 1 B. G. Delbridge, 1 A. Garc´ ıa, 1 P. M¨ uller, 2 H. E. Swanson, 1 I. S. Towner, 3 S. Utsuno, 1 W. Williams, 2, † and C. Wrede 1, ‡ 1 Department of Physics and Center for Experimental Nuclear Physics and Astrophysics, University of Washington, 2.8 … challenge and test 6 He-> 6 Li 3 LO NN + N 2 LO NNN(500) N of ab initio calculations, 3 LO NN N + 0)| Expt nuclear forces 2.6 NCSM and currents -1 + 1 -> 1 SRG Λ =1.7 fm h Ω =16 MeV 2.4 |M(GT; 0 Improvement with the NNN interaction 2.2 MEC must be included Also: Operator renormalization 2 2 4 8 10 6 & continuum N max 9

  10. 6 He half-life Precision measurement of 6 He beta decay PHYSICAL REVIEW C 86 , 035506 (2012) Precision measurement of the 6 He half-life and the weak axial current in nuclei A. Knecht, 1,* R. Hong, 1 D. W. Zumwalt, 1 B. G. Delbridge, 1 A. Garc´ ıa, 1 P. M¨ uller, 2 H. E. Swanson, 1 I. S. Towner, 3 S. Utsuno, 1 W. Williams, 2, † and C. Wrede 1, ‡ 1 Department of Physics and Center for Experimental Nuclear Physics and Astrophysics, University of Washington, 2.8 … challenge and test 3 LO NN - 1b 6 He-> 6 Li N of ab initio calculations, 3 LO NN + N 2 LO 3N(500) - 1b N nuclear forces + 0)| 3 LO NN + N 2 LO 3N(500) - 1b+2b 2.6 N NCSM Expt and currents + 1 -> 1 -1 SRG Λ =1.7 fm h Ω =16 MeV 2.4 |M(GT; 0 Improvement with the NNN interaction 2.2 Improvement with MEC Also: Operator renormalization 2 2 4 6 8 10 & continuum N max 10

  11. 6 He half-life Precision measurement of 6 He beta decay PHYSICAL REVIEW C 86 , 035506 (2012) Precision measurement of the 6 He half-life and the weak axial current in nuclei A. Knecht, 1,* R. Hong, 1 D. W. Zumwalt, 1 B. G. Delbridge, 1 A. Garc´ ıa, 1 P. M¨ uller, 2 H. E. Swanson, 1 I. S. Towner, 3 S. Utsuno, 1 W. Williams, 2, † and C. Wrede 1, ‡ 1 Department of Physics and Center for Experimental Nuclear Physics and Astrophysics, University of Washington, 2.8 … challenge and test 3 LO NN - 1b 6 He-> 6 Li N of ab initio calculations, 3 LO NN + N 2 LO 3N(500) - 1b N nuclear forces + 0)| 3 LO NN + N 2 LO 3N(500) - 1b+2b 2.6 N NCSM Expt and currents + 1 -> 1 -1 SRG Λ =1.7 fm h Ω =16 MeV 2.4 |M(GT; 0 Improvement with the NNN interaction 2.2 Improvement with MEC Still to be done: Operator renormalization 2 2 4 6 8 10 & continuum N max 11

  12. SRG evolution of transition operators PHYSICAL REVIEW C 92 , 014320 (2015) PHYSICAL REVIEW C 90 , 011301(R) (2014) Operator evolution for ab initio electric dipole transitions of 4 He Operator evolution for ab initio theory of light nuclei Micah D. Schuster, 1,* Sofia Quaglioni, 2, † Calvin W. Johnson, 1, ‡ Eric D. Jurgenson, 2 and Petr Navr´ Micah D. Schuster, 1,2 Sofia Quaglioni, 2 Calvin W. Johnson, 1 Eric D. Jurgenson, 2 and Petr Navr´ atil 3 atil 3 1 San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA 1 San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA f ˆ JT ˆ JT = ˆ ˆ ˆ i * ; ∑ O λ U λ O λ = ∞ U λ U λ = ψ α ( λ ) ψ α ( λ = ∞ ) α Final/initial unitary Eigenstates after transformations & before evolution Bare operator E1 E1 3 S 1 à 3 P 2 3 S 1 à 3 P 2 Induces 2-body (& higher-body) operators 3-body evolved Bare λ = 2 fm -1 operator

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend