spectral theory of automorphism groups in qft
play

Spectral theory of automorphism groups in QFT Wojciech Dybalski (G - PowerPoint PPT Presentation

Spectral theory of automorphism groups in QFT Wojciech Dybalski (G ottingen) A A A 0 0 0 X 1 Outline 1. Particle content in QM and QFT. 2. Space translations in QM and QFT. 3. Spectral decomposition: A = A pp A pc


  1. Spectral theory of automorphism groups in QFT Wojciech Dybalski (G¨ ottingen) A A A 0 0 0 ω X 1

  2. Outline 1. Particle content in QM and QFT. 2. Space translations in QM and QFT. 3. Spectral decomposition: ˆ A = ˆ A pp ⊕ ˆ A pc ⊕ ˆ A ac . 4. Infrared structure. dim ˆ A pc < ∞ . 5. Massive theories. ˆ A pc = { 0 } . Existence of particles. 6. Conclusions. 2

  3. 1(a). Particle content of QM. Spectrum of H . Example: two-body scattering, short-range interaction. H = H 0 + V, H = H pp ⊕ H ac ⊕ H sc , Ω ± = t →±∞ e itH e − itH 0 . lim The theory has a complete particle interpretation if Ran Ω ± = H ac , and H sc = { 0 } . 3

  4. 1(b). Particle content of QFT. Arveson spectrum. • Def. Sp α x B is the support of the distribution � 1 � d 4 x e − ipx α x ( B ) , B ∈ A . B ( p ) := (2 π ) 2 • Fact: Sp α x B = the energy-momentum transfer of B i.e. BP (∆) H ⊂ P (∆ + Sp α x B ) H , where P (∆) - spectral measure of ( H, � P ). • Def. B is energy-decreasing if Sp α x B ∩ V + = ∅ . 4

  5. • Theorem. [Buchholz 90] If B ∈ A is almost local and energy-decreasing then � B ∗ B � E, 1 < ∞ for all E ≥ 0. � � B ∗ B � E, 1 := sup d 3 x | ω ( α � x ( B ∗ B )) | . ω ∈ S E • Def. Space of particle detectors: A (1) := { C ∈ A | � C � E, 1 < ∞ for all E ≥ 0 } < 8 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + ω ω ο ω ο 5

  6. • Asymptotic functionals: Let ω ∈ S E , C ∈ A (1) , � � � σ ( t ) ω ( C ) := α ∗ d 3 x α � t ω x C , σ + ω − limit points as t → ∞ . • Particle content: { σ + ω | ω ∈ S E for some E ≥ 0 } . 0 1 0 1 0 1 0 1 0 1 0 1 + + + + + + ∗ω α t ω ο ω ο • Question: When is the particle content non-trivial? • Strategy: Detailed spectral analysis of α � x . 6

  7. 2(a). Space translations (QM). Setting: Ψ , Φ ∈ L 2 ( R 3 , d 3 x ), • supp Φ-compact. • Function: � x → (Ψ | U ( � x )Φ). Φ Φ Φ Ψ x • Facts: � x )Φ) | 2 < ∞ for all Φ. d 3 x | (Ψ | U ( � ( a ) sup � Ψ �≤ 1 � x )Φ) | 2 − ε = ∞ for some Φ. d 3 x | (Ψ | U ( � ( b ) sup � Ψ �≤ 1 • Square integrability is the best possible generic feature. 7

  8. 2(b). Space translations (QFT). A := � Setting: ˆ O⊂ R 4 A ( O ), A ∈ ˆ • A , ω ∈ S E . • x → ω ( α � Function: � x A ). A A A 0 0 0 ω X � 1 d 3 x | ω ( α � x A ) | 2 ) 2 . • Def: � A � E, 2 := sup ( ω ∈ S E A (2) := { A ∈ ˆ ˆ A | � A � E, 2 < ∞ for all E ≥ 0 } . A (2) is ’large’ (of finite co-dimension in ˆ QM suggests: ˆ • A ). 8

  9. 3. Spectral decomposition: ˆ A = ˆ A pp ⊕ ˆ A pc ⊕ ˆ A ac . A = � • ˆ O⊂ R 4 A ( O ) - α � x -invariant ∗ -algebra. • Step 1: ˆ A = ˆ A pp ⊕ ˆ A c , ˆ { λI | λ ∈ C } , := A pp ˆ { A ∈ ˆ := A | ω 0 ( A ) = 0 } . A c 0 for A ∈ ˆ Phase-space conditions ⇒ ω ( α � x A ) − → A c . | � x |→∞ • Step 2: ˆ A c = ˆ A pc ⊕ ˆ A ac , A ac := ˆ ˆ A (2) , ˆ A pc − direct sum complement. 9

  10. 4(a). Infrared structure. dim ˆ A pc < ∞ . A ∗ and Condition L (2) : There exist functionals τ 1 , . . . , τ N ∈ ˆ • pointlike localized fields φ 1 , . . . , φ N s.t. for any A ∈ ˆ A N � + R (2) ( A ) � R (2) ( A ) � E, 2 < ∞ . A = ω 0 ( A ) I + τ i ( A ) φ i , � �� � � �� � i =1 � �� � ˆ ˆ A pp A ac ˆ A pc Implication: ˆ • A ac ⊃ ker ω 0 ∩ ker τ 1 ∩ . . . ∩ ker τ N i.e. dim ˆ A pc < ∞ . 10

  11. 4(b). Infrared order. ⇒ regularity of ω ( � • Decay of ω ( α � x A ) ⇐ A ( � p )) � p ) := (2 π ) − 3 � d 3 x e i� p� x α � A ( � x ( A ) . 2 • Def. Infrared order of an operator A is given by � p )) | 2 < ∞ for all E ≥ 0 } . p | β | ω ( � d 3 p | � ord ( A ) := inf { β ≥ 0 | sup A ( � ω ∈ S E • Theorem.[Buchholz 90] ord ( A ) ≤ 4 for A ∈ ˆ A . 11

  12. 4(c). Examples. • Massless free field theory: A ∈ ˆ A A = ω 0 ( A ) I + τ 1 ( A ) φ + τ 2 ( A ) : φ 2 : + τ 3 ( A ) : φ 3 : + R (2) ( A ) . Implications: (a) ˆ dim ˆ A pc ∈ { 2 , 3 } , ord ˆ A - full theory: A = { 0 , 1 , 2 } . A e - even part: A e = { 0 , 1 } . (b) ˆ dim ˆ ord ˆ A e pc = 1 , A d - derivatives: (c) ˆ ˆ A d pc = { 0 } . ˆ • Massive free field theory: A pc = { 0 } . 12

  13. 5(a). Massive theories. Particle detectors. • Theorem. [Buchholz 90] B ∗ B ∈ A (1) if B ∈ A almost local and energy-decreasing. Condition L (1) : • There exists µ > 0 s.t. for any g ∈ S ( R ), supp ˜ g ⊂ [ − µ, µ ] (a) A ( g ) ∈ A (1) if A ∈ ˆ A c . (b) � A ( g ) � E, 1 ≤ c n,E, O � R n AR n � , A ∈ A ( O ) c , R := (1 + H ) − 1 . Status: Holds in massive free field theory. 13

  14. 5(b). Massive theories. ˆ A pc = { 0 } . Theorem. Condition L (1) ( a ) implies that ˆ A pc = { 0 } . Proof: To show: A ∈ ˆ A c ⇒ A ∈ ˆ A (2) • P E AP E = P E { A ( f − ) + A ( g ) + A ( f + ) } P E . ~ ~ ~ − f + g f − − µ µ E E 0 • A ( f − ) - energy decreasing and almost local ⇒ A ( f − ) ∗ A ( f − ) ∈ A (1) ⇒ A ( f − ) ∈ A (2) . • A ( g ) ∈ A (1) ⊂ A (2) by Condition L (1) ( a ). � 14

  15. 5(c). Massive theories. T µν . • Approximation properties. Let φ be a pointlike localized field s.t. ω 0 ( φ ) = 0. Then, for some n > 0 , A r ∈ A ( O r ) c (a) [Bostelmann 05] r → 0 � R n ( φ − A r ) R n � = 0 . lim (b) Under Condition L (1) (b), i.e. � A ( g ) � E, 1 ≤ c n,E, O � R n AR n � , r → 0 � φ ( g ) − A r ( g ) � E, 1 = 0 . lim Condition T: There exists a pointlike localized field T 00 , s.t. • ω 0 ( T 00 ) = 0, which satisfies � d 3 x ω ( α � x T 00 ( g )) = ω ( H ) , ω ∈ S E . 15

  16. 5(e). Massive theories. Non-trivial particle content. Theorem. L (1) , T ⇒ σ + ω � = 0 for any ω ∈ S E s.t. ω ( H ) > 0. Proof. � � � • To show: σ ( t ) d 3 x ω ω ( C ) = α ( t,� x ) C has non-zero limit points. • Choose C ∈ A (1) s.t. � T 00 ( g ) − C � E, 1 ≤ ε . Then � � � d 3 x ω x ) T 00 ( g ) ≤ ε + | σ ( t ) 0 < ω ( H ) = ω ( C ) | . � α ( t,� 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + ∗ω α t ω ο ω ο 16

  17. 6. Conclusions: • We found a decomposition ˆ A = ˆ A pp ⊕ ˆ A pc ⊕ ˆ A ac . ˆ A pc carries information about the infrared structure. • dim ˆ A pc < ∞ in theories satisfying Condition L (2) . A pc is ’at the boundary’ between ˆ ˆ A pp and ˆ A c . • ˆ A pc = { 0 } in massive theories satisfying Condition L (1) . Such theories, admitting T µν , have non-trivial particle content. • Open problem: Non-triviality of the particle content in the massless case. 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend