some zhu reduction formula and applications
play

Some Zhu reduction formula and applications Matthew Krauel - PowerPoint PPT Presentation

Some Zhu reduction formula and applications Matthew Krauel California State University, Sacramento June 27th, 2019 Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019 Recap: The original Zhu story Zhus work: The study of n


  1. Some Zhu reduction formula and applications Matthew Krauel California State University, Sacramento June 27th, 2019 Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  2. Recap: The original Zhu story Zhu’s work: The study of n -point functions. Definition ( n -point functions) Let V be a VOA with Virasoro vector ω of central charge c . For v 1 , . . . , v n ∈ V and a weak V -module M , the n -point function is Z M (( v 1 , x 1 ) , . . . , ( v n , x n ); ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 24 , := tr M Y · · · Y where q := e 2 π i τ with τ ∈ H = { x + iy ∈ C | y > 0 } . Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  3. Recap: The original Zhu story Zhu’s work: The study of n -point functions. Definition ( n -point functions) Let V be a VOA with Virasoro vector ω of central charge c . For v 1 , . . . , v n ∈ V and a weak V -module M , the n -point function is Z M (( v 1 , x 1 ) , . . . , ( v n , x n ); τ ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 24 , := tr M Y · · · Y where q := e 2 π i τ with τ ∈ H = { x + iy ∈ C | y > 0 } . Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  4. Recap: The original Zhu story Zhu’s work: The study of n -point functions. Definition ( n -point functions) Let V be a VOA with Virasoro vector ω of central charge c . For v 1 , . . . , v n ∈ V and a weak V -module M , the n -point function is Z M (( v 1 , x 1 ) , . . . , ( v n , x n ); ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 24 , := tr M Y · · · Y where q := e 2 π i τ with τ ∈ H = { x + iy ∈ C | y > 0 } . Zhu’s core results concerning n -point functions: Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  5. Recap: The original Zhu story Zhu’s work: The study of n -point functions. Definition ( n -point functions) Let V be a VOA with Virasoro vector ω of central charge c . For v 1 , . . . , v n ∈ V and a weak V -module M , the n -point function is Z M (( v 1 , x 1 ) , . . . , ( v n , x n ); ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 24 , := tr M Y · · · Y where q := e 2 π i τ with τ ∈ H = { x + iy ∈ C | y > 0 } . Zhu’s core results concerning n -point functions: Established their modularity. Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  6. Recap: The original Zhu story Zhu’s work: The study of n -point functions. Definition ( n -point functions) Let V be a VOA with Virasoro vector ω of central charge c . For v 1 , . . . , v n ∈ V and a weak V -module M , the n -point function is Z M (( v 1 , x 1 ) , . . . , ( v n , x n ); ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 24 , := tr M Y · · · Y where q := e 2 π i τ with τ ∈ H = { x + iy ∈ C | y > 0 } . Zhu’s core results concerning n -point functions: Established their modularity. Established their convergence. Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  7. Recap: The original Zhu story Theorem Suppose V is a rational and C 2 -cofinite and V = M 0 , M 1 , . . . , M k be its inequivalent irreducible modules. Moreover let v s ∈ V [wt v s ] for 1 ≤ s ≤ n. Then 1 each Z M (( v 1 , x 1 ); τ ) converges on H , and � a b � 2 for any ∈ SL 2 ( Z ) we have there exists scalars α ij ∈ C such that c d � � ( v 1 , x 1 ) , . . . , ( v n , x n ); a τ + b Z M i c τ + d k � � wt v j = ( c τ + d ) α ij Z M j (( v 1 , x 1 ) , . . . , ( v n , x n ); τ ) . j =1 Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  8. Recap: The original Zhu story To establish this result Zhu introduced/enhanced a number of tools: Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  9. Recap: The original Zhu story To establish this result Zhu introduced/enhanced a number of tools: The change of coordinate VOA Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  10. Recap: The original Zhu story To establish this result Zhu introduced/enhanced a number of tools: The change of coordinate VOA The ‘Zhu algebra’ Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  11. Recap: The original Zhu story To establish this result Zhu introduced/enhanced a number of tools: The change of coordinate VOA The ‘Zhu algebra’ Introducing the theory of ODEs to study 1-point functions Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  12. Recap: The original Zhu story To establish this result Zhu introduced/enhanced a number of tools: The change of coordinate VOA The ‘Zhu algebra’ Introducing the theory of ODEs to study 1-point functions Reduction formulas. Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  13. Recap: The original Zhu story To establish this result Zhu introduced/enhanced a number of tools: The change of coordinate VOA The ‘Zhu algebra’ Introducing the theory of ODEs to study 1-point functions Reduction formulas. Core idea of proof Zhu expressed n -point functions as linear combinations of ( n − 1)-point functions. Reduced the study of n -point functions to the study of 1-point functions. Allowed the creation of ODEs whose solution space consisted of 1-point functions. Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  14. Recap: Original Zhu reduction formula, Part I Original Zhu reduction formula, Part I We have Z M (( a , y ) , ( v 1 , x 1 ) , . . . , ( v n , x n ); τ ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 = tr M v (wt a − 1) Y · · · Y 24 � y − x j � � n � + P m +1 2 π i , τ Z M (( v 1 , x 1 ) , . . . , ( a [ m ] v j , x j ) , . . . , ( v n , x n ); τ ) . j =1 m ≥ 0 Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  15. Recap: Original Zhu reduction formula, Part I Original Zhu reduction formula, Part I We have Z M (( a , y ) , ( v 1 , x 1 ) , . . . , ( v n , x n ); τ ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 = tr M v (wt a − 1) Y · · · Y 24 � y − x j � � n � + P m +1 2 π i , τ Z M (( v 1 , x 1 ) , . . . , ( a [ m ] v j , x j ) , . . . , ( v n , x n ); τ ) . j =1 m ≥ 0 Where ( q w = e 2 π iw ) � P m +1 ( w , τ ) : = ( − 1) m +1 n m q n 1 w 1 − q n − δ m , 0 m ! 2 n ∈ Z \{ 0 } � 1 � n = ( − 1) m d ( P 1 ( w , τ )) . m ! 2 π i dw Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  16. Recap: Original Zhu reduction formula, Part II Original Zhu reduction formula, Part II Let a , v 1 , . . . v n ∈ V . For N ≥ 1 we have Z M (( a [ − N ] v 1 , x 1 ) , . . . , ( v n , x n ); τ ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 = δ N , 1 tr M v (wt a − 1) Y · · · Y 24 � m + N − 1 � � ( − 1) m +1 + G m + N ( τ ) Z M (( a [ m ] v 1 , x 1 ) , . . . , ( v n , x n ); τ ) m m ≥ 0 � m + N − 1 � � x 1 − x j � � n � ( − 1) N +1 + P m + N , τ m 2 π i j =2 m ≥ 0 × Z M (( v 1 , x 1 ) , . . . , ( a [ m ] v j , x j ) , . . . , ( v n , x n ); τ ) . Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  17. Recap: Original Zhu reduction formula, Part II Original Zhu reduction formula, Part II Let a , v 1 , . . . v n ∈ V . For N ≥ 1 we have Z M (( a [ − N ] v 1 , x 1 ) , . . . , ( v n , x n ); τ ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 = δ N , 1 tr M v (wt a − 1) Y · · · Y 24 � m + N − 1 � � ( − 1) m +1 + G m + N ( τ ) Z M (( a [ m ] v 1 , x 1 ) , . . . , ( v n , x n ); τ ) m m ≥ 0 � m + N − 1 � � x 1 − x j � � n � ( − 1) N +1 + P m + N , τ m 2 π i j =2 m ≥ 0 × Z M (( v 1 , x 1 ) , . . . , ( a [ m ] v j , x j ) , . . . , ( v n , x n ); τ ) . Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  18. Recap: Original Zhu reduction formula, Part II Original Zhu reduction formula, Part II Let a , v 1 , . . . v n ∈ V . For N ≥ 1 we have Z M (( a [ − N ] v 1 , x 1 ) , . . . , ( v n , x n ); τ ) � � � e x n L (0) v n , e x n � q L (0) − c e x 1 L (0) v 1 , e x 1 = δ N , 1 tr M v (wt a − 1) Y · · · Y 24 � m + N − 1 � � ( − 1) m +1 + G m + N ( τ ) Z M (( a [ m ] v 1 , x 1 ) , . . . , ( v n , x n ); τ ) m m ≥ 0 � m + N − 1 � � x 1 − x j � � n � ( − 1) N +1 + P m + N , τ m 2 π i j =2 m ≥ 0 × Z M (( v 1 , x 1 ) , . . . , ( a [ m ] v j , x j ) , . . . , ( v n , x n ); τ ) . Here, � 1 G k ( τ )(2 π iw ) k − 1 . P 1 ( w , τ ) = 2 π iw − k ≥ 1 Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  19. Recap: The original Zhu story Rested heavily on the coefficient functions: For k ≥ 1, � 1 G 2 k ( τ ) = ( m τ + n ) 2 k . ( m , n ) ∈ Z 2 \ (0 , 0) Modular forms for k ≥ 2. Quasi-modular form when k = 1. G 2 k ( τ ) holomorphic. Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

  20. Recap: The original Zhu story Rested heavily on the coefficient functions: For k ≥ 1, � 1 G 2 k ( τ ) = ( m τ + n ) 2 k . ( m , n ) ∈ Z 2 \ (0 , 0) Modular forms for k ≥ 2. Quasi-modular form when k = 1. G 2 k ( τ ) holomorphic. Notes: � � = ( c τ + d ) 2 G 2 ( τ ) − c ( c τ + d ) a τ + b 1 G 2 . c τ + d 2 π i Matthew Krauel (CSUS) Representation Theory XVI June 27th, 2019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend