some ideas about constructive tensor field theory
play

Some ideas about constructive tensor field theory Vincent Rivasseau 1 - PowerPoint PPT Presentation

Some ideas about constructive tensor field theory Vincent Rivasseau 1 Fabien Vignes-Tourneret 2 1 Universit Paris-Saclay 2 CNRS & Universit de Lyon Outline Random tensors, random spaces Loop Vertex Expansion A constructive result for


  1. Some ideas about constructive tensor field theory Vincent Rivasseau 1 Fabien Vignes-Tourneret 2 1 Université Paris-Saclay 2 CNRS & Université de Lyon

  2. Outline Random tensors, random spaces Loop Vertex Expansion A constructive result for tensors

  3. Random tensors, random spaces Random tensors, random spaces Why? How? Loop Vertex Expansion A constructive result for tensors

  4. Why tensor fields? 1. Generalize matrix models to higher dimensions • w.r.t. their symmetry properties, • provide a theory of random spaces. 2. Define a canonical way of summing over spaces 3. Implement a geometrogenesis scenario • spacetime from scratch, • background independent.

  5. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry .

  6. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m

  7. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m • Invariants as D -coloured graphs 4 3 � n i T n 1 n 2 n 3 n 4 T n 1 n 2 n 3 n 4 =: T · T T T 2 1

  8. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m • Invariants as D -coloured graphs (bipartite D -reg. properly edge-coloured) 4 3 � n i T n 1 n 2 n 3 n 4 T n 1 n 2 n 3 n 4 =: T · T T T 2 1

  9. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m • Invariants as D -coloured graphs (bipartite D -reg. properly edge-coloured) 1 T T 3 4 � m i , n j T m 1 m 2 m 3 m 4 T m 1 n 2 m 3 m 4 T n 1 n 2 n 3 n 4 T n 1 m 2 n 3 n 4 =: Tr 4 [ T , T ] 1 2 2 3 2 2 4 3 4 1 3 1 T T

  10. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m • Invariants as D -coloured graphs (bipartite D -reg. properly edge-coloured) 1 T T 3 4 � m i , n j T m 1 m 2 m 3 m 4 T m 1 n 2 m 3 m 4 T n 1 n 2 n 3 n 4 T n 1 m 2 n 3 n 4 =: Tr 4 [ T , T ] 1 2 2 3 2 2 4 3 4 1 3 1 T T

  11. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m • Invariants as D -coloured graphs (bipartite D -reg. properly edge-coloured) 1 T T 3 4 � m i , n j T m 1 m 2 m 3 m 4 T m 1 n 2 m 3 m 4 T n 1 n 2 n 3 n 4 T n 1 m 2 n 3 n 4 =: Tr 4 [ T , T ] 1 2 2 3 2 2 4 3 4 1 3 1 T T

  12. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m • Invariants as D -coloured graphs (bipartite D -reg. properly edge-coloured) 1 T T 3 4 � m i , n j T m 1 m 2 m 3 m 4 T m 1 n 2 m 3 m 4 T n 1 n 2 n 3 n 4 T n 1 m 2 n 3 n 4 =: Tr 4 [ T , T ] 1 2 2 3 2 2 4 3 4 1 3 1 T T

  13. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m • Invariants as D -coloured graphs (bipartite D -reg. properly edge-coloured) 1 T T 3 4 � m i , n j T m 1 m 2 m 3 m 4 T m 1 n 2 m 3 m 4 T n 1 n 2 n 3 n 4 T n 1 m 2 n 3 n 4 =: Tr 4 [ T , T ] 1 2 2 3 2 2 4 3 4 1 3 1 T T

  14. Invariant actions Symmetry Consider T , T : Z D → C , complex rank D tensors with no symmetry . • Matrix models: invariant under (at most) two copies of U ( N ). Tensor models (rank D ): invariant under D copies of U ( N ). � (1) (2) (D) T n 1 n 2 ··· n D − → U n 1 m 1 U n 2 m 2 · · · U n D m D T m 1 m 2 ··· m D m • Invariants as D -coloured graphs (bipartite D -reg. properly edge-coloured) 1 T T 2 � n 1 n 2 n 3 n 4 T n 1 n 2 m 3 m 4 =: Tr m i , n j T m 1 m 2 m 3 m 4 T m 1 m 2 n 3 n 4 T 4 [ T , T ] 1 4 3 3 4 2 4 3 3 2 1 2 1 T T

  15. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices

  16. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs 0 0 1 1 2 0 0

  17. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs 0 0 1 1 2 0 0

  18. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs 0 0 1 1 2 0 0

  19. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs = D -Triang. spaces

  20. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs = D -Triang. spaces D -simplex vertex 1 1 3 0 2 0 0 2 2 1 3 3

  21. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs = D -Triang. spaces half-edge ( D − 1)-face 1 1 3 0 2 0 0 2 2 1 3 3

  22. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs = D -Triang. spaces half-edge ( D − 1)-face 1 1 3 0 2 0 0 2 2 1 3 3

  23. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs = D -Triang. spaces half-edge ( D − 1)-face 1 1 3 0 2 0 0 2 2 1 3 3

  24. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs = D -Triang. spaces half-edge ( D − 1)-face 1 1 3 0 2 0 0 2 2 1 3 3

  25. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs = D -Triang. spaces D -simplex vertex 1 1 3 0 2 0 0 2 2 1 3 3

  26. Invariant actions Feynman graphs • Action of a tensor model � S ( T , T ) = T · T + g B Tr B [ T , T ] , B∈ I I ⊂ { D -coloured graphs of order � 4 } interaction vertices • Feynman graphs = ( D + 1)-coloured graphs = D -Triang. spaces edge gluing 1 3 2 3 0 2 1 0 0 1 2 3

  27. Loop Vertex Expansion Random tensors, random spaces Loop Vertex Expansion Why? How? A constructive result for tensors

  28. Constructive field theory A functional integral point of view • Aim: get some control on connected quantities via the derivation of tractable formulas for the logarithm of correlation functions (say).

  29. Constructive field theory The classical approach • Aim: get some control on connected quantities via the derivation of tractable formulas for the logarithm of correlation functions (say). • How? By finding an expansion which interpolates between the functional integral and the perturbative series.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend