solving 0 1 semidefinite programs for distributionally
play

Solving 0-1 Semidefinite Programs for Distributionally Robust - PowerPoint PPT Presentation

Solving 0-1 Semidefinite Programs for Distributionally Robust Allocation of Surgery Blocks Yiling Zhang 1 Joint work with Prof. Siqian Shen 1 , Prof. S. Ayca Erdogan 2 1 Industrial and Operations Engineering, University of Michigan 2 Industrial


  1. Solving 0-1 Semidefinite Programs for Distributionally Robust Allocation of Surgery Blocks Yiling Zhang 1 Joint work with Prof. Siqian Shen 1 , Prof. S. Ayca Erdogan 2 1 Industrial and Operations Engineering, University of Michigan 2 Industrial and Systems Engineering, San Jose State University Supporeted by NSF grant #1433066. 1/25

  2. Outline Introduction DR Chance-Constrained Model Formulation Ambiguity Set 0-1 SDP Reformulation Solving Approaches Cutting-Plane Method 0-1 SOCP Approximation Computational Studies Setup Results Conclusion 2/25

  3. Allocation of Surgery Blocks Operating rooms (ORs): ◮ 40% of a hospital’s total revenues; BUT, a similarly large proportion of its total expenses 1 ◮ Average OR runs at only 68% capacity 1 ◮ Uncertain service duration of surgical procedure 1 Healthcare Financial Management Association 2003 3/25

  4. Allocation of Surgery Blocks Operating rooms (ORs): ◮ 40% of a hospital’s total revenues; BUT, a similarly large proportion of its total expenses 1 ◮ Average OR runs at only 68% capacity 1 ◮ Uncertain service duration of surgical procedure Works on allocation of surgery blocks: ◮ Blake and Donald (2002): MILP ◮ Denton, Miller, Balasubramanian, and Huschka (2010): two-stage stochastic integer program ◮ Shylo, Prokopyev, and Schaefer (2012): chance-constrained formulation ◮ Deng, Shen, and Denton (2016): distributionally robust formulation ◮ ... 1 Healthcare Financial Management Association 2003 3/25

  5. Applications Applications with similar settings (bin packing structure): ◮ Cloud computing server planning: uncertain job hours requested ◮ Shen and Wang (2014) ◮ Machine scheduling: uncertain task duration ◮ Skutella and Uetz (2005) cloudcomputingcafe.com theideasmith.net 4/25

  6. Stochastic OR Allocation Problem 𝑡 1 𝑈 1 𝑡 2 𝑈 2 𝑡 3 𝑈 3 𝑡 4 Surgeries ORs 5/25

  7. Stochastic OR Allocation Problem 𝑡 1 𝑈 1 𝑡 2 𝑈 2 𝑡 3 𝑈 3 𝑡 4 Surgeries ORs (random service duration) 5/25

  8. Stochastic OR Allocation Problem 𝑡 11 𝑡 21 𝑡 31 𝑈 1 𝑡 12 𝑨 1 =? 𝑡 22 𝑡 32 𝑈 2 𝑡 13 𝑨 2 =? 𝑡 23 𝑡 33 𝑈 3 𝑡 14 𝑨 3 =? 𝑡 24 𝑡 34 Surgeries ORs (random service duration) 5/25

  9. Stochastic OR Allocation Problem 𝑡 11 𝑡 21 𝑡 31 𝑈 1 𝑡 12 𝑨 1 = 1 𝑡 22 𝑡 32 𝑈 2 𝑡 13 𝑨 2 = 1 𝑡 23 𝑡 33 𝑈 3 𝑡 14 𝑨 3 = 0 𝑡 24 𝑡 34 Surgeries ORs (random service duration) Decisions: o z i ∈ { 0 , 1 } : z i = 1 if we open OR i , and = 0 if not. 5/25

  10. Stochastic OR Allocation Problem 𝑡 11 𝑡 21 𝑡 31 𝑈 1 𝑡 11 𝑡 13 𝑡 12 𝑡 12 𝑨 1 = 1 𝑡 22 𝑡 32 𝑈 2 𝑡 24 𝑡 13 𝑨 2 = 1 𝑡 23 𝑡 33 𝑈 3 𝑡 14 𝑨 3 = 0 𝑡 24 𝑡 34 Surgeries ORs (random service duration) Decisions: o z i ∈ { 0 , 1 } : z i = 1 if we open OR i , and = 0 if not. o y ij ∈ { 0 , 1 } : y ij = 1 if allocate surgery j to OR i 5/25

  11. A Chance-Constrained Formulation Let s i = [ s ij , j ∈ J ] T , y i = [ y ij , j ∈ J ] T c y � c z � � min i z i + ij y ij z , y i ∈ I i ∈ I j ∈ J o Objective: Minimize the cost of opening ORs 6/25

  12. A Chance-Constrained Formulation Let s i = [ s ij , j ∈ J ] T , y i = [ y ij , j ∈ J ] T c y � c z � � min i z i + ij y ij z , y i ∈ I i ∈ I j ∈ J s.t. y ij ≤ ρ ij z i ∀ i ∈ I , j ∈ J � y ij = 1 ∀ j ∈ J i ∈ I y ij , z i ∈ { 0 , 1 } ∀ i ∈ I , j ∈ J o Objective: Minimize the cost of opening ORs o Deterministic constraints: Feasible surgery allocation 6/25

  13. A Chance-Constrained Formulation Let s i = [ s ij , j ∈ J ] T , y i = [ y ij , j ∈ J ] T c y � c z � � min i z i + ij y ij z , y i ∈ I i ∈ I j ∈ J s.t. y ij ≤ ρ ij z i ∀ i ∈ I , j ∈ J � y ij = 1 ∀ j ∈ J i ∈ I y ij , z i ∈ { 0 , 1 } ∀ i ∈ I , j ∈ J � � s T i y i ≤ T i ≥ 1 − α i , ∀ i ∈ I P f s o Objective: Minimize the cost of opening ORs o Deterministic constraints: Feasible surgery allocation o Chance constraint: “Total operating time ≤ time available in OR i ” at 1 − α i probability, given the distribution f s 6/25

  14. Outline Introduction DR Chance-Constrained Model Formulation Ambiguity Set 0-1 SDP Reformulation Solving Approaches Cutting-Plane Method 0-1 SOCP Approximation Computational Studies Setup Results Conclusion 7/25

  15. Distributionally Robust (DR) Model � � � c y c z min i z i + ij y ij (2) z , y i ∈ I i ∈ I j ∈ J s.t. y ij ≤ ρ ij z i ∀ i ∈ I , j ∈ J (3) � y ij = 1 ∀ j ∈ J (4) i ∈ I y ij , z i ∈ { 0 , 1 } ∀ i ∈ I , j ∈ J (5) � � s T inf i y i ≤ T i ≥ 1 − α i , ∀ i ∈ I (6) f s ∈D i P f ◮ (6): The worst-case probability given by any f s ∈ D i is guaranteed at least 1 − α i (a DR chance constraint). 8/25

  16. Literature Review Distributionally robust optimization ◮ Scarf, Arrow, and Karlin (1958); Delage and Ye (2010); Bertsimas, Doan, Natarajan, and Teo (2010); Goh and Sim (2010), Wiesemann, Kuhn, and Sim (2014), Esfahani and Kuhn (2016)... Distributionally robust chance-constrained programming ◮ Zymler, Kuhn, and Rustem (2013); Jiang and Guan (2015) Jointly chance-constrained binary packing ◮ Song, Luedtke, and K¨ u¸ c¨ ukyavuz (2014) DR chance-constrained knapsack/bin packing ◮ Zhang, Denton, and Xie (2015): mean + variance ◮ Wagner (2008): mean + covariance ◮ Cheng, Delage, and Lisser (2014): mean + covariance 9/25

  17. Outline Introduction DR Chance-Constrained Model Formulation Ambiguity Set 0-1 SDP Reformulation Solving Approaches Cutting-Plane Method 0-1 SOCP Approximation Computational Studies Setup Results Conclusion 10/25

  18. Moment-based Ambiguity Set ◮ Ambiguity set (Delage and Ye, 2010): � � i f ( s i ) ds i = 1 � s i ∈ Ξ ∗ D i = D M i ( µ 0 i , Σ 0 i , γ 1 , γ 2 ) = f ( s i ) : ( E [ s i ] − µ 0 i ) T (Σ 0 i ) − 1 ( E [ s i ] − µ 0 i ) ≤ γ 1 E [( s i − µ 0 i )( s i − µ 0 i ) T ] � γ 2 Σ 0 i ∗ Ξ i = R | J | 11/25

  19. Moment-based Ambiguity Set ◮ Ambiguity set (Delage and Ye, 2010): � � i f ( s i ) ds i = 1 � s i ∈ Ξ ∗ D i = D M i ( µ 0 i , Σ 0 i , γ 1 , γ 2 ) = f ( s i ) : ( E [ s i ] − µ 0 i ) T (Σ 0 i ) − 1 ( E [ s i ] − µ 0 i ) ≤ γ 1 E [( s i − µ 0 i )( s i − µ 0 i ) T ] � γ 2 Σ 0 i ∗ Ξ i = R | J | ◮ decrease γ 2 with fixed γ 1 ◮ decrease γ 1 with fixed γ 2 γ 2 = 5 γ 1 = 5 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟐) 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟔) 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟑) 𝜹 𝟐 , 𝜹 𝟑 = (𝟑, 𝟔) 𝚻 𝟐/𝟑 𝚻 𝟐/𝟑 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟔) 𝜹 𝟐 , 𝜹 𝟑 = (𝟔, 𝟔) 𝛎 𝛎 ∗ ( µ, Σ): True mean and covariance pair 11/25

  20. Moment-based Ambiguity Set ◮ Ambiguity set (Delage and Ye, 2010): � � i f ( s i ) ds i = 1 � s i ∈ Ξ ∗ i ( µ 0 i , Σ 0 D i = D M i , γ 1 , γ 2 ) = f ( s i ) : ( E [ s i ] − µ 0 i ) T (Σ 0 i ) − 1 ( E [ s i ] − µ 0 i ) ≤ γ 1 E [( s i − µ 0 i )( s i − µ 0 i ) T ] � γ 2 Σ 0 i ∗ Ξ i = R | J | ◮ decrease γ 2 with fixed γ 1 ◮ decrease γ 1 with fixed γ 2 γ 2 = 2 γ 1 = 2 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟐) 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟔) 𝜹 𝟐 , 𝜹 𝟑 = (𝟑, 𝟔) 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟑) 𝚻 𝟐/𝟑 𝚻 𝟐/𝟑 𝜹 𝟐 , 𝜹 𝟑 = (𝟔, 𝟔) 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟔) 𝛎 𝛎 ∗ ( µ, Σ): True mean and covariance pair 11/25

  21. Moment-based Ambiguity Set ◮ Ambiguity set (Delage and Ye, 2010): � � i f ( s i ) ds i = 1 � s i ∈ Ξ ∗ D i = D M i ( µ 0 i , Σ 0 i , γ 1 , γ 2 ) = f ( s i ) : ( E [ s i ] − µ 0 i ) T (Σ 0 i ) − 1 ( E [ s i ] − µ 0 i ) ≤ γ 1 E [( s i − µ 0 i )( s i − µ 0 i ) T ] � γ 2 Σ 0 i ∗ Ξ i = R | J | ◮ decrease γ 2 with fixed γ 1 ◮ decrease γ 1 with fixed γ 2 γ 2 = 1 γ 1 = 1 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟐) 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟔) 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟑) 𝜹 𝟐 , 𝜹 𝟑 = (𝟑, 𝟔) 𝚻 𝟐/𝟑 𝚻 𝟐/𝟑 𝜹 𝟐 , 𝜹 𝟑 = (𝟔, 𝟔) 𝜹 𝟐 , 𝜹 𝟑 = (𝟐, 𝟔) 𝛎 𝛎 ∗ ( µ, Σ): True mean and covariance pair 11/25

  22. Outline Introduction DR Chance-Constrained Model Formulation Ambiguity Set 0-1 SDP Reformulation Solving Approaches Cutting-Plane Method 0-1 SOCP Approximation Computational Studies Setup Results Conclusion 12/25

  23. 0-1 SDP Reformulation with D i = D M i Jiang and Guan (2015) show that ◮ By introducing the dual variables, the DR chance constraints (6) ⇔ SDP constraints (exact): γ 2 Σ 0 i · G i + 1 − r i + Σ 0 i · H i + γ 1 q i − α i λ i ≤ 0 (7a) � G i � 0 1 − p i � � 2 y i − � 0 (7b) − p T 1 2 y T λ i + y T i µ 0 1 − r i i − T i z i i i � G i � � H i � − p i p i ∈ S ( | J | +1) × ( | J | +1) ∈ S ( | J | +1) × ( | J | +1) , , − p T + p T + 1 − r i q i i i λ i ≥ 0 . (7c) 13/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend