soft interactions in herwig
play

Soft interactions in Herwig Stefan Gieseke Institut f ur - PowerPoint PPT Presentation

Soft interactions in Herwig Stefan Gieseke Institut f ur Theoretische Physik KIT work with Patrick Kirchgaeer and Frash er Loshaj MPI@LHC16 San Crist obal de las Casas 28 Nov2 Dec 2016 Stefan Gieseke MPI@LHC 2016 28 Nov


  1. Soft interactions in Herwig Stefan Gieseke Institut f¨ ur Theoretische Physik KIT work with Patrick Kirchgaeßer and Frash¨ er Loshaj MPI@LHC16 – San Crist´ obal de las Casas 28 Nov–2 Dec 2016 Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 1/21

  2. pp Event Generator Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 2/21

  3. pp Event Generator Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 2/21

  4. pp Event Generator Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 2/21

  5. pp Event Generator Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 2/21

  6. pp Event Generator Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 2/21

  7. pp Event Generator Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 2/21

  8. Underlying event in Herwig++ Semihard UE • Default from Herwig++ 2.1. [Herwig++, 0711.3137] • Multiple hard interactions, p t ≥ p min . [B¨ ahr, SG, Seymour, JHEP 0807:076] t • pQCD 2 → 2. • Similar to JIMMY . • Good description of harder UE data (“plateau”). Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 3/21

  9. Underlying event in Herwig++ Soft UE • Default from Herwig++ 2.3. [Herwig++, 0812.0529] • Extension to soft interactions p t < p min . t • Theoretical work with simplest possible extension. [B¨ ahr, Butterworth, Seymour, JHEP 0901:065] • “Hot Spot” model. [B¨ ahr, Butterworth, SG, Seymour, 0905.4671] Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 3/21

  10. Hot Spot model Fix the two parameters µ soft and σ inc soft in b , s ) = 1 � � � � � b ; µ ) σ inc hard ( s ; p min b ; µ soft ) σ inc χ tot ( A ( )+ A ( t soft 2 from two constraints. Require simultaneous description of σ tot and b el (measured/well predicted), � � � b , s ) � σ tot ( s ) ! d 2 � 1 − e − χ tot ( = 2 b , b b 2 � � � b , s ) � b el ( s ) ! d 2 � 1 − e − χ tot ( = . σ tot Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 4/21

  11. Extending into the soft region Continuation of the differential cross section into the soft region p t < p min (here: p t integral kept fixed) t 5 /dp t (1 / GeV) p min 2 =3 GeV , = 0 . 5 GeV ✞ t ✆ ✝ p min 2 =5 GeV , =0 . 06 GeV ✞ t ✆ 4 � (5 GeV) d 3 d p min , 2 ( p 2 ) soft ✁ p t e t t ✄ ☎ ✄ dp t ✂ 2 � 1 / 1 0 0 2 4 6 8 10 p t (GeV) Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 5/21

  12. Implementation of soft scattering Soft gluon production with soft p t < p min spectrum. t Colour structure important. Two extreme cases possible. Sensitivity to parameter colourDisrupt = P ( disrupt colour lines ) Long colour lines appear when swapping outgoing gluons. R 1 R g 1 g 3 g g g g g 4 g 2 R 2 R Colour reconnections applied! Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 6/21

  13. b b b b b b b b b b b b b b b b So far at the LHC Soft model is extension of MPI model for Underlying Event and harder aspects of Min Bias events. Herwig 7.0 at 900 GeV and 7 TeV: [ATLAS, Eur.Phys.J. C71 (2011) 1636] , √ s = 900 GeV , √ s = 7 TeV Transverse ∑ p ⊥ density vs. p clus 1 Transverse ∑ p ⊥ density vs. p clus 1 ⊥ ⊥ 0 . 8 � d 2 ∑ p ⊥ /d η d φ � � d 2 ∑ p ⊥ /d η d φ � 2 0 . 7 0 . 6 1 . 5 0 . 5 0 . 4 1 0 . 3 Data Data Hw 7 . 0 LO ⊕ PS Hw 7 . 0 LO ⊕ PS 0 . 2 0 . 5 0 . 1 0 0 1 . 4 1 . 4 MC/Data 1 . 2 MC/Data 1 . 2 1 1 0 . 8 0 . 8 0 . 6 0 . 6 1 2 3 4 5 6 7 8 2 4 6 8 10 12 14 p ⊥ (leading particle) [GeV] p ⊥ (leading particle) [GeV] Still reasonably well for moderately soft particles. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 7/21

  14. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b So far at the LHC Soft model is extension of MPI model for Underlying Event and harder aspects of Min Bias events. Herwig 7.0 at 900 GeV and 7 TeV: [ATLAS, Eur.Phys.J. C71 (2011) 1636] > 3.0 GeV, √ s = 900 GeV > 3.0 GeV, √ s = 7 TeV N density vs. ∆ φ , p clus 1 N density vs. ∆ φ , p clus 1 ⊥ ⊥ � d 2 N /d η d φ � 1 . 2 � d 2 N /d η d φ � 2 1 1 . 5 0 . 8 0 . 6 1 Data Data 0 . 4 Hw 7 . 0 LO ⊕ PS Hw 7 . 0 LO ⊕ PS 0 . 5 0 . 2 0 0 1 . 4 1 . 4 MC/Data 1 . 2 MC/Data 1 . 2 1 1 0 . 8 0 . 8 0 . 6 0 . 6 0 0 . 5 1 1 . 5 2 2 . 5 3 0 0 . 5 1 1 . 5 2 2 . 5 3 | φ | (w.r.t. leading particle) [rad] | φ | (w.r.t. leading particle) [rad] Still reasonably well for moderately soft particles. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 7/21

  15. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b The bump A clear case of abusing a model for the hard UE in forward/diffractive final states. . . [ATLAS, Eur.Phys.J. C72 (2012) 1926] Rapidity gap size in η starting from η = ± 4.9, p T > 200 MeV d σ /d ∆ η F [mb] 10 2 Data Hw 7 . 0 LO ⊕ PS 10 1 1 10 − 1 1 . 4 MC/Data 1 . 2 1 0 . 8 0 . 6 0 1 2 3 4 5 6 7 8 ∆ η F Bump is artefact. No Diffraction. Poor modeling of soft interactions. Colour assignment ad hoc. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 8/21

  16. Outline Challenge accepted. • Model for diffractive final states. • Model for soft particle production. • Results. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 9/21

  17. Diffraction as part of minimum bias simulation Diffractive final states directly modeled. Not embedded in MPI approach via cuts through triple pomeron vertices. Therefore change in constraint � � � b , s ) � x σ tot ( s ) ! d 2 � 1 − e − χ tot ( = 2 b , where x ≈ 1 − σ diff ∼ 20 − 25 % . σ tot In min-bias simulation: every event is either • diffractive, directly modeled from pp initial state. • non-diffractive, modeled in the MPI picture, parton level. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 10/21

  18. Diffractive final states Strictly low mass diffraction only. Allow M 2 large nonetheless. M 2 power-like, t exponential (Regge). pp → ( baryonic cluster )+ p . Hadronic content from cluster fission/decay C → hh ... Cluster may be quite light. If very light, use directly pp → ∆ + p . Also double diffraction implemented. pp → ( cluster )+( cluster ) pp → ∆ + ∆ . Technically: new MEs for diffractive processes set up. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 11/21

  19. Model for soft particle production in Herwig Reproduce core properties of soft particle production. “flat in rapidity”, “narrow in p t ”. Main idea: “soft interaction = cut pomeron = particle ladder”. N soft from MPI model = #ladders. Clusters produced via colour connected quarks and gluons. Adopt to soft interactions in Herwig via remnant decays. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 12/21

  20. Multiperipheral kinematics [Baker, Ter-Martirosyan 1976] Average relative momentum fraction � x � . Leads to flat rapidity distribution of emissions in a single ladder. ∆ y ∼ ln 1 q i , z x . p i +1 , z = (1 − x i +1 ) q i ,z Choose some constant C , then � x � ∼ 1 / C . q i +1 , z = x i +1 q i, z � N � average number of emitted p A p 1 particles. q 1 p 2 q 2 ln C ln s 1 p 3 q 3 � N � = p 4 m 2 q 4 p 5 p ⊥ or m ⊥ moderate, unordered. p B p N Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 13/21

  21. Soft particle production model in Herwig • #ladders = N soft . • N particles from Poissonian, width � N � . Model parameter 1 / ln C ≡ n ladder → tuned. • x i smeared around � x � (calculated). • p ⊥ from Gaussian acc to soft MPI model. • particles are q , g , see figure. Symmetrically produced from both remnants. • Colour connections between neighboured particles. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 14/21

  22. Soft particle production model in Herwig Single soft ladder with MinBias initiating process. Remnant 1 P Beam , 1 Cluster q g g P g g ¯ q P Beam, 2 Remnant 2 Further hard/soft MPI scatters possible. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 14/21

  23. Parameters and tuning Diffraction plus MPI incl new soft model. Diffractive cross sections adjusted to data. Tuning to Min Bias data: η , p ⊥ for various N ch , � p ⊥ � ( N ch ) . Usual MPI parameters ⊥ ( √ s ) , ( p min ⊥ , 0 , b ) → p min µ 2 , p reco . One additional parameter n ladder . Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 15/21

  24. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Tuned results ATLAS Min Bias 7 TeV. [ATLAS, New.J.Phys. 13 (2011) 053033] Charged particle η at 7 TeV, track p ⊥ > 500 MeV, for N ch ≥ 6 1/ N ev d N ch /d η 4 3 . 5 3 2 . 5 2 1 . 5 Data newSoftMPI, χ 2 / n = 0 . 28 1 LHC-MB, χ 2 / n = 8 . 15 0 . 5 0 1 . 4 MC/Data 1 . 2 1 0 . 8 0 . 6 - 2 - 1 0 1 2 η Similar to previous results, “harder part of Min Bias”. Stefan Gieseke · MPI@LHC 2016 · 28 Nov – 2 Dec 2016 16/21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend