skew littlewood richardson rules from hopf algebras
play

Skew LittlewoodRichardson Rules from Hopf Algebras Aaron Lauve - PowerPoint PPT Presentation

Skew LittlewoodRichardson Rules from Hopf Algebras Aaron Lauve Texas A&M University Loyola University Chicago joint work with: Thomas Lam University of Michigan Frank Sottile Texas A&M University FPSAC 2010, San Francisco, CA


  1. Skew Littlewood–Richardson Rules from Hopf Algebras Aaron Lauve Texas A&M University Loyola University Chicago joint work with: Thomas Lam University of Michigan Frank Sottile Texas A&M University FPSAC 2010, San Francisco, CA

  2. Hopf Algebras, *@#?% !

  3. Hopf Structure of Λ As an algebra, . . . Λ = Z [ h 1 , h 2 , . . . ] complete homogeneous symmetric functions � h n := x i 1 x i 2 · · · x i n i 1 ≤ i 2 ≤···≤ i n = Z [ e 1 , e 2 , . . . ] elementary symmetric functions � x i 1 x i 2 · · · x i n e n := i 1 < i 2 < ··· < i n Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 3 / 20

  4. Hopf Structure of Λ As an algebra, . . . Λ = Z [ h 1 , h 2 , . . . ] complete homogeneous symmetric functions � h n := x i 1 x i 2 · · · x i n i 1 ≤ i 2 ≤···≤ i n = Z [ e 1 , e 2 , . . . ] elementary symmetric functions � x i 1 x i 2 · · · x i n e n := i 1 < i 2 < ··· < i n � � = span Z Schur functions s λ (a nice basis) Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 3 / 20

  5. Hopf Structure of Λ As a Hopf algebra, . . . we need more maps, Λ = ( Λ , · , ∆ , ε, S ) coproduct ∆ : Λ → Λ ⊗ Λ � ∆( h n ) = h j ⊗ h k j + k = n Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 4 / 20

  6. Hopf Structure of Λ As a Hopf algebra, . . . we need more maps, Λ = ( Λ , · , ∆ , ε, S ) coproduct counit ∆ : Λ → Λ ⊗ Λ ε : Λ → Z � ∆( h n ) = h j ⊗ h k ε ( h n ) = δ n 0 j + k = n (put h 0 = e 0 = 1) Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 4 / 20

  7. Hopf Structure of Λ As a Hopf algebra, . . . we need more maps, Λ = ( Λ , · , ∆ , ε, S ) coproduct counit antipode ∆ : Λ → Λ ⊗ Λ ε : Λ → Z S : Λ → Λ � S ( h k ) = ( − 1 ) k e k ∆( h n ) = h j ⊗ h k ε ( h n ) = δ n 0 j + k = n (put h 0 = e 0 = 1) Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 4 / 20

  8. Hopf Structure of Λ As a Hopf algebra, . . . we need more maps, Λ = ( Λ , · , ∆ , ε, S ) coproduct counit antipode ∆ : Λ → Λ ⊗ Λ ε : Λ → Z S : Λ → Λ � S ( h k ) = ( − 1 ) k e k ∆( h n ) = h j ⊗ h k ε ( h n ) = δ n 0 j + k = n (put h 0 = e 0 = 1) together with some compatibility conditions (omitted) Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 4 / 20

  9. Schur Functions � � s λ

  10. Schur Functions A nice basis Definition. Given a partition λ , s λ is the generating function for the corresponding semistandard Young tableaux SSYT ( λ ) . a ≤ b Ferrers fillings satisfying . < c Example: 1 1 1 1 1 2 1 2 1 3 s = + + + + + · · · 2 3 2 3 2 x 12 x 2 + x 12 x 3 + x 1 x 22 + = + · · · 2 x 1 x 2 x 3 Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 6 / 20

  11. Schur Functions A nice basis Definition. Given a partition λ , s λ is the generating function for the corresponding semistandard Young tableaux SSYT ( λ ) . a ≤ b Ferrers fillings satisfying . < c Example: 1 1 1 1 1 2 1 2 1 3 s = + + + + + · · · 2 3 2 3 2 x 12 x 2 + x 12 x 3 + x 1 x 22 + = + · · · 2 x 1 x 2 x 3 Worth noting: s = h n and s = e n . . . . . . . Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 6 / 20

  12. Schur Functions Classical problem Problem. Understand the coefficients c ν λ, μ in � c ν s λ · s μ = λ, μ s ν . ν Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 7 / 20

  13. Schur Functions Classical problem Problem. Understand the coefficients c ν λ, μ in � c ν s λ · s μ = λ, μ s ν . ν sum over all ways � ( λ + ) to add j Special case (Pieri rule). s λ · h j = s λ + boxes in a λ + j −→ h λ + horizontal strip to the diagram λ . Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 7 / 20

  14. Schur Functions Classical problem Problem. Understand the coefficients c ν λ, μ in � c ν s λ · s μ = λ, μ s ν . ν sum over all ways � ( λ + ) to add j Special case (Pieri rule). s λ · h j = s λ + boxes in a λ + j −→ h λ + horizontal strip to the diagram λ . Example ( j = 3 ) : Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 7 / 20

  15. Schur Functions Nice answer! � ν c ν Problem. Understand the coefficients c ν λ, μ in s λ · s μ = λ, μ s ν . Theorem (Littlewood–Richardson rule) Fix T ∈ SSYT ( ν ) . Then play jeu-de-taquin) c ν � � ( R , S ): R ∈ SSYT ( λ ) , S ∈ SSYT ( μ ) , R ∗ S = T λ, μ = # . Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 8 / 20

  16. Schur Functions Nice answer! � ν c ν Problem. Understand the coefficients c ν λ, μ in s λ · s μ = λ, μ s ν . Theorem (Littlewood–Richardson rule) Fix T ∈ SSYT ( ν ) . Then play jeu-de-taquin) c ν � � ( R , S ): R ∈ SSYT ( λ ) , S ∈ SSYT ( μ ) , R ∗ S = T λ, μ = # . 1 1 Example: Pick T = . Guess R = 1 and S = 1 . 2 2 1 2 ∗ 1 Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 8 / 20

  17. Schur Functions Nice answer! � ν c ν Problem. Understand the coefficients c ν λ, μ in s λ · s μ = λ, μ s ν . Theorem (Littlewood–Richardson rule) Fix T ∈ SSYT ( ν ) . Then play jeu-de-taquin) c ν � � ( R , S ): R ∈ SSYT ( λ ) , S ∈ SSYT ( μ ) , R ∗ S = T λ, μ = # . 1 1 Example: Pick T = . Guess R = 1 and S = 1 . 2 2 1 1 �−→ 1 2 1 2 Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 8 / 20

  18. Schur Functions Nice answer! � ν c ν Problem. Understand the coefficients c ν λ, μ in s λ · s μ = λ, μ s ν . Theorem (Littlewood–Richardson rule) Fix T ∈ SSYT ( ν ) . Then play jeu-de-taquin) c ν � � ( R , S ): R ∈ SSYT ( λ ) , S ∈ SSYT ( μ ) , R ∗ S = T λ, μ = # . 1 1 Example: Pick T = . Guess R = 1 and S = 1 . 2 2 1 1 1 1 �−→ �−→ 1 2 1 2 2 Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 8 / 20

  19. Schur Functions Nice answer! � ν c ν Problem. Understand the coefficients c ν λ, μ in s λ · s μ = λ, μ s ν . Theorem (Littlewood–Richardson rule) Fix T ∈ SSYT ( ν ) . Then play jeu-de-taquin) c ν � � ( R , S ): R ∈ SSYT ( λ ) , S ∈ SSYT ( μ ) , R ∗ S = T λ, μ = # . 1 1 Example: Pick T = . Guess R = 1 and S = 1 . 2 2 1 1 1 1 1 1 �−→ �−→ �−→ 1 2 1 2 2 2 Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 8 / 20

  20. Schur Functions Nice answer! � ν c ν Problem. Understand the coefficients c ν λ, μ in s λ · s μ = λ, μ s ν . Theorem (Littlewood–Richardson rule) Fix T ∈ SSYT ( ν ) . Then play jeu-de-taquin) c ν � � ( R , S ): R ∈ SSYT ( λ ) , S ∈ SSYT ( μ ) , R ∗ S = T λ, μ = # . 1 1 Example: Pick T = . Guess R = 1 and S = 1 . 2 2 1 1 1 1 1 1 �−→ �−→ �−→ 1 2 1 2 2 2 c 21 2 , 1 ≥ 1 Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 8 / 20

  21. Schur Functions More nice facts More Facts. � Same coefficients as for product! c ν ∆( s ν ) = λ, μ s λ ⊗ s μ ( Λ is a self-dual Hopf algebra.) λ, μ Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 9 / 20

  22. Schur Functions More nice facts More Facts. � Same coefficients as for product! c ν ∆( s ν ) = λ, μ s λ ⊗ s μ ( Λ is a self-dual Hopf algebra.) λ, μ � “Skew ν by μ ” ≡ “collect terms = s ν/μ ⊗ s μ ( − ) ⊗ s μ in the coproduct.” μ Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 9 / 20

  23. Schur Functions More nice facts More Facts. � Same coefficients as for product! c ν ∆( s ν ) = λ, μ s λ ⊗ s μ ( Λ is a self-dual Hopf algebra.) λ, μ � “Skew ν by μ ” ≡ “collect terms = s ν/μ ⊗ s μ ( − ) ⊗ s μ in the coproduct.” μ | λ | s λ ′ � � S ( s λ ) = ( − 1 ) = − s E.g., S s Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 9 / 20

  24. Skew Schur Functions � � s λ/μ | μ ⊆ λ

  25. Skew Schur Functions Assaf-McNamara problem Problem. Understand the coefficients in � s λ/μ · s σ/τ = d . Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 11 / 20

  26. Skew Schur Functions Assaf-McNamara problem Problem. Understand the coefficients in � s λ/μ · s σ/τ = d . Natural to take to be Schur functions. Assaf-McNamara take to be skew Schur functions. Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 11 / 20

  27. Skew Schur Functions Assaf-McNamara problem Problem. Understand the coefficients in � s λ/μ · s σ/τ = d . Natural to take to be Schur functions. Assaf-McNamara take to be skew Schur functions. in the spirit of Pieri rule. . . μ λ Aaron Lauve (TAMU, LUC) Skew Littlewood–Richardson Rules 4 August 2010 11 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend