single trace side channel attacks on masked lattice based
play

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption - PowerPoint PPT Presentation

S C I E N C E P A S S I O N T E C H N O L O G Y Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption Robert Primas, Peter Pessl, Stefan Mangard IAIK, Graz University of Technology, Austria CHES 2017,


  1. S C I E N C E P A S S I O N T E C H N O L O G Y Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption Robert Primas, Peter Pessl, Stefan Mangard IAIK, Graz University of Technology, Austria CHES 2017, September 28 www.iaik.tugraz.at

  2. www.iaik.tugraz.at Outlook Single-trace SCA on masked asymmetric lattice-based encryption Combination of template attack (TA) with: Belief Propagation Lattice Decoding Primas 2 CHES 2017, September 28

  3. www.iaik.tugraz.at Outlook Single-trace SCA on masked asymmetric lattice-based encryption Combination of template attack (TA) with: Belief Propagation Lattice Decoding ⇒ Full private key recovery Primas 2 CHES 2017, September 28

  4. www.iaik.tugraz.at Motivation Lattice-based cryptography is a promising PQ candidate Quantum computer resistant Many efficient schemes available Not a lot analysis of implementation security Primas 3 CHES 2017, September 28

  5. www.iaik.tugraz.at Motivation Lattice-based cryptography is a promising PQ candidate Quantum computer resistant Many efficient schemes available Not a lot analysis of implementation security ⇒ First single-trace SCA for lattice-based crypto Primas 3 CHES 2017, September 28

  6. www.iaik.tugraz.at Ring-LWE Encryption Proposed by Lyubashevsky, Peikert and Regev[LPR10] Based on Learning with Errors Problem Operates on polynomials in the ring: Z q [ x ] / ( x n + 1 ) In our setting: q = 7681 , n = 256 Primas 4 CHES 2017, September 28

  7. www.iaik.tugraz.at Ring-LWE Encryption r 2 ( a , p ) m ( private key ) ( encoded message ) ( public key ) alice bob * calculations are in Z q [ x ] / ( x n + 1 ) Primas 5 CHES 2017, September 28

  8. www.iaik.tugraz.at Ring-LWE Encryption r 2 ( a , p ) m ( private key ) ( encoded message ) ( public key ) e 1 , e 2 , e 3 ← X n alice bob * calculations are in Z q [ x ] / ( x n + 1 ) Primas 5 CHES 2017, September 28

  9. www.iaik.tugraz.at Ring-LWE Encryption r 2 ( a , p ) m ( private key ) ( encoded message ) ( public key ) e 1 , e 2 , e 3 ← X n c 1 = ae 1 + e 2 ← − − − − − − − − − ( cipher text 1 ) alice bob * calculations are in Z q [ x ] / ( x n + 1 ) Primas 5 CHES 2017, September 28

  10. www.iaik.tugraz.at Ring-LWE Encryption r 2 ( a , p ) m ( private key ) ( encoded message ) ( public key ) e 1 , e 2 , e 3 ← X n c 1 = ae 1 + e 2 ← − − − − − − − − − ( cipher text 1 ) c 2 = pe 1 + e 3 + m ← − − − − − − − − − − − − alice ( cipher text 2 ) bob * calculations are in Z q [ x ] / ( x n + 1 ) Primas 5 CHES 2017, September 28

  11. www.iaik.tugraz.at Ring-LWE Decryption m = c 1 r 2 + c 2 alice * calculations are in Z q [ x ] / ( x n + 1 ) Primas 6 CHES 2017, September 28

  12. www.iaik.tugraz.at Ring-LWE Decryption m = c 1 r 2 + c 2 alice ⇒ Inefficient: > O ( n 2 ) due to polynomial division * calculations are in Z q [ x ] / ( x n + 1 ) Primas 6 CHES 2017, September 28

  13. www.iaik.tugraz.at Number Theoretic Transform (NTT) Efficient polynomial multiplication in certain rings, e.g.: Z q [ x ] / ( x n + 1 ) Similar to FFT: ab = INTT ( NTT( a ) ∗ NTT ( b ) ) Features butterfly network Primas 7 CHES 2017, September 28

  14. www.iaik.tugraz.at NTT - Butterfly 2-coefficients + x x 0 , 0 1 , 0 ω 0 n x x 0 , 1 1 , 1 - Primas 8 CHES 2017, September 28

  15. www.iaik.tugraz.at NTT - Butterfly Network 4-coefficients + + x x x 0 , 0 1 , 0 2 , 0 + x x x 0 , 1 1 , 1 2 , 1 - + x x x 0 , 2 1 , 2 2 , 2 - x x x 0 , 3 1 , 3 2 , 3 - - Primas 9 CHES 2017, September 28

  16. www.iaik.tugraz.at NTT - Butterfly Network 256-coefficients + + x x x 0 , 0 1 , 0 2 , 0 ω 0 + n x x x 0 , 1 1 , 1 2 , 1 - + ω 0 n x x x 0 , 2 1 , 2 2 , 2 - ω 0 ω 1 n n x x x 0 , 3 1 , 3 2 , 3 - - Primas 10 CHES 2017, September 28

  17. www.iaik.tugraz.at Efficient Ring-LWE Decryption m = c 1 r 2 + c 2 m = INTT ( ˜ c 1 ∗ ˜ r 2 + ˜ c 2 ) alice * calculations are in Z q [ x ] / ( x n + 1 ) * ˜ x is the NTT transformed of x Primas 11 CHES 2017, September 28

  18. www.iaik.tugraz.at Efficient Ring-LWE Decryption m = c 1 r 2 + c 2 m = INTT ( ˜ c 1 ∗ ˜ r 2 + ˜ c 2 ) alice ⇒ Faster: O ( n log n ) * calculations are in Z q [ x ] / ( x n + 1 ) * ˜ x is the NTT transformed of x Primas 11 CHES 2017, September 28

  19. www.iaik.tugraz.at Attack Idea Given the ciphertext ( ˜ c 1 , ˜ c 2 ) and private key ˜ r 2 , decryption is defined as: m = INTT ( ˜ c 1 ∗ ˜ r 2 + ˜ c 2 ) mod q � �� � I INTT * public * ˜ x is the NTT transformed of x Primas 12 CHES 2017, September 28

  20. www.iaik.tugraz.at Attack Idea Given the ciphertext ( ˜ c 1 , ˜ c 2 ) and private key ˜ r 2 , decryption is defined as: m = INTT ( ˜ c 1 ∗ ˜ r 2 + ˜ c 2 ) mod q � �� � I INTT Thus ˜ r 2 can be expressed as: c − 1 ˜ r 2 = ( I INTT − ˜ c 2 ) ∗ ˜ mod q 1 * public * ˜ x is the NTT transformed of x Primas 12 CHES 2017, September 28

  21. www.iaik.tugraz.at Attack Strategy Steps: 1. Single-trace TA on the INTT operation 2. Leakage combination via Belief Propagation (BP) 3. Key recovery via lattice decoding Primas 13 CHES 2017, September 28

  22. www.iaik.tugraz.at Step 1: Template Attack Efficient SW implementation by de Clercq et al. [dCRVV15] Texas Instruments MSP432 (ARM Cortex-M4F) EM-side-channel of power regulation circuitry Observed traces are expected to be close to power consumption Primas 14 CHES 2017, September 28

  23. www.iaik.tugraz.at Step 1: Template Attack Target: Modular multiplication in each butterfly + x x 0 , 0 1 , 0 One factor of multiplication is always known ( ω x n ) x x 0 , 1 1 , 1 - Additional exploitation of timing information Goal: Probability distribution over each observed coefficient Primas 15 CHES 2017, September 28

  24. www.iaik.tugraz.at Step 1: Template Attack Target: Modular multiplication in each butterfly + + x x x 0 , 0 1 , 0 2 , 0 One factor of multiplication is + always known ( ω x x x x n ) 0 , 1 1 , 1 2 , 1 - + Additional exploitation of timing x x x 0 , 2 1 , 2 2 , 2 - information x x x 0 , 3 1 , 3 2 , 3 - - Goal: Probability distribution over each observed coefficient Primas 16 CHES 2017, September 28

  25. www.iaik.tugraz.at Step 2: Belief Propagation Iterative algorithm Calculate marginal distributions Combine leakage information + x x 0 , 0 1 , 0 Usage in SCA first proposed by ω 0 Veyrat-Charvillon [VGS14] n x x 0 , 1 1 , 1 - Primas 17 CHES 2017, September 28

  26. www.iaik.tugraz.at Step 2: Belief Propagation Iterative algorithm Calculate marginal distributions Combine leakage information + x x 0 , 0 1 , 0 Usage in SCA first proposed by ω 0 Veyrat-Charvillon [VGS14] n x x 0 , 1 1 , 1 - Primas 18 CHES 2017, September 28

  27. www.iaik.tugraz.at Step 2: Belief Propagation Iterative algorithm Calculate marginal distributions Combine leakage information + x x 0 , 0 1 , 0 Usage in SCA first proposed by ω 0 Veyrat-Charvillon [VGS14] n x x 0 , 1 1 , 1 - Primas 19 CHES 2017, September 28

  28. www.iaik.tugraz.at Step 2: Belief Propagation Iterative algorithm Calculate marginal distributions Combine leakage information + x x 0 , 0 1 , 0 Usage in SCA first proposed by ω 0 Veyrat-Charvillon [VGS14] n x x 0 , 1 1 , 1 - Primas 20 CHES 2017, September 28

  29. www.iaik.tugraz.at Step 2: Belief Propagation Iterative algorithm Calculate marginal distributions Combine leakage information + x x 0 , 0 1 , 0 Usage in SCA first proposed by ω 0 Veyrat-Charvillon [VGS14] n x x 0 , 1 1 , 1 - Primas 21 CHES 2017, September 28

  30. www.iaik.tugraz.at MUL No MUL Step 2: Belief Propagation 0 32 Considerations: 64 Uneven distribution of side-channel information 96 Variable Index Bad TA performance in first layer ( ω 0 n = 1) 128 160 192 224 255 1 2 3 4 5 6 7 8 Layer Index Primas 22 CHES 2017, September 28

  31. www.iaik.tugraz.at FG 1 FG 2 FG 3 Step 2: Belief Propagation 0 32 Solution: 64 Perform BP on 3 Sub-Networks: 96 Variable Index Ignore areas with: 128 No / little side-channel information 160 Comparably noisy side-channel information 192 Not all inputs can be recovered → Step 3: 224 255 1 2 3 4 5 6 7 8 Layer Index Primas 23 CHES 2017, September 28

  32. www.iaik.tugraz.at Entropy 0 13 Step 2: Belief Propagation 0 32 Variable Index Iteration 0 64 96 127 2 3 4 5 6 7 8 Layer Index Primas 24 CHES 2017, September 28

  33. www.iaik.tugraz.at Entropy 0 13 Step 2: Belief Propagation 0 32 Variable Index Iteration 1 64 96 127 2 3 4 5 6 7 8 Layer Index Primas 24 CHES 2017, September 28

  34. www.iaik.tugraz.at Entropy 0 13 Step 2: Belief Propagation 0 32 Variable Index Iteration 2 64 96 127 2 3 4 5 6 7 8 Layer Index Primas 24 CHES 2017, September 28

  35. www.iaik.tugraz.at Entropy 0 13 Step 2: Belief Propagation 0 32 Variable Index Iteration 3 64 96 127 2 3 4 5 6 7 8 Layer Index Primas 24 CHES 2017, September 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend