shape dynamics of point vortices
play

Shape Dynamics of Point Vortices Tomoki Ohsawa April Fools Day, - PowerPoint PPT Presentation

Shape Dynamics of Point Vortices Tomoki Ohsawa April Fools Day, 2019 Tomoki Ohsawa (UTDallas) Georgia Tech 1 / 46 Dynamics of Hurricanes? Source: U. Washington News & NOAA Tomoki Ohsawa (UTDallas) Georgia Tech 2 / 46 Dynamics


  1. Shape Dynamics of Point Vortices Tomoki Ohsawa April Fools’ Day, 2019 Tomoki Ohsawa (UT–Dallas) Georgia Tech 1 / 46

  2. Dynamics of Hurricanes? Source: U. Washington News & NOAA Tomoki Ohsawa (UT–Dallas) Georgia Tech 2 / 46

  3. Dynamics of Hurricanes? Source: U. Washington News & NOAA Tomoki Ohsawa (UT–Dallas) Georgia Tech 2 / 46

  4. � � � � � � � � � � Point Vortex on R 2 Point vortex with circulation Γ at x 0 = ( x 0 , y 0 ) � Vorticity ξ ( x ) = curl u ( x ) = Γ δ ( x − x 0 ) Γ > 0 x 0 Tomoki Ohsawa (UT–Dallas) Georgia Tech 3 / 46

  5. Point Vortex on R 2 Point vortex with circulation Γ at x 0 = ( x 0 , y 0 ) � Vorticity ξ ( x ) = curl u ( x ) = Γ δ ( x − x 0 ) ⇓ Γ Velocity field u ( x ) = 2 π r 2 ( − ( y − y 0 ) , x − x 0 ) � � Γ > 0 � x 0 - � - � - � - � � � � Tomoki Ohsawa (UT–Dallas) Georgia Tech 3 / 46

  6. Dynamics of N Point Vortices on R 2 Γ 3 > 0 Γ 1 > 0 x 3 x 1 Γ 2 < 0 x 2 Each point vortex j located at x j ∈ R 2 is convected by the net velocity of the other vortices: � x j ( t ) = ˙ u k ( x j ( t )) , 1 ≤ k ≤ N k � = j Tomoki Ohsawa (UT–Dallas) Georgia Tech 4 / 46

  7. Dynamics of N Point Vortices on R 2 which gives: x j = − 1 y j − y k y j = 1 x j − x k � � ˙ Γ k � x j − x k � 2 , ˙ Γ k � x j − x k � 2 , 2 π 2 π 1 ≤ k ≤ N 1 ≤ k ≤ N k � = j k � = j or, by setting q j := x j + i y j ∈ C , i q j − q k � q j = ˙ Γ k | q j − q k | 2 2 π 1 ≤ k ≤ N k � = j for j ∈ { 1 , . . . , N } . Tomoki Ohsawa (UT–Dallas) Georgia Tech 5 / 46

  8. What is Hamiltonian System? Classical Hamiltonian system q = position, p = m ˙ q = momentum p 2 Hamiltonian H ( q , p ) = + V ( q ) = Total Energy 2 m � �� � ���� Potential Energy Kinetic Energy The Hamiltonian system � � � ∂ H � ∂ H q = ∂ H p = − ∂ H 0 I [ ˙ q ˙ p ] = ⇐ ⇒ ˙ ∂ p , ˙ − I 0 ∂ q ∂ p ∂ q gives the equations of motion (Newton’s Second Law): md 2 q dt 2 = −∇ V ( q ) . Tomoki Ohsawa (UT–Dallas) Georgia Tech 6 / 46

  9. Symplectic Geometry and Hamiltonian Systems Symplectic manifold (“Phase space”) P = { ( q , p ) } equipped with symplectic form Ω = d q ∧ d p Vector field q ∂ p ∂ X H = ˙ ∂ q + ˙ ∂ p Contraction i X H Ω = Ω( X H , · ) = − ˙ p d q + ˙ q d p Exterior differential d H = ∂ H ∂ q d q + ∂ H ∂ p d p Hamilton’s Eq. q = ∂ H p = − ∂ H ⇒ ˙ i X H Ω = d H = ∂ p , ˙ ∂ q Tomoki Ohsawa (UT–Dallas) Georgia Tech 7 / 46

  10. Symplectic Geometry and Hamiltonian Systems More generally... Definition (Hamiltonian System on Symplectic Manifold) T z 2 P Manifold P P T z 3 P T z 1 z 2 Symplectic form Ω (closed z 3 z 1 non-degenerate two-form) Hamiltonian H : P → R P Tomoki Ohsawa (UT–Dallas) Georgia Tech 8 / 46

  11. Symplectic Geometry and Hamiltonian Systems More generally... Definition (Hamiltonian System on Symplectic Manifold) 2 P T Manifold P z P T T X H ( z 2 ) P z 1 z 3 X H ( z 1 ) z 2 Symplectic form Ω (closed X H ( z 3 ) z 3 z 1 non-degenerate two-form) Hamiltonian H : P → R P Define a Hamiltonian system by i X H Ω = d H = ⇒ Determines the vector field (dynamics) X H on P . Tomoki Ohsawa (UT–Dallas) Georgia Tech 8 / 46

  12. Symplectic Geometry and Hamiltonian Systems More generally... Definition (Hamiltonian System on Symplectic Manifold) 2 P T Manifold P z P T T X H ( z 2 ) P z 1 z 3 X H ( z 1 ) z 2 Symplectic form Ω (closed X H ( z 3 ) z 3 z 1 non-degenerate two-form) Hamiltonian H : P → R P Define a Hamiltonian system by i X H Ω = d H = ⇒ Determines the vector field (dynamics) X H on P . Tomoki Ohsawa (UT–Dallas) Georgia Tech 8 / 46

  13. Hamiltonian Dynamics of N Point Vortices on R 2 Symplectic form on C N = { ( q 1 , . . . , q N ) } : N Ω j := − 1 � 2 Im( d q j ∧ d q ∗ Ω = Γ j Ω j with j ) = d x j ∧ d y j j =1 Hamiltonian H : C N → R H ( q 1 , . . . , q N ) = − 1 � Γ j Γ k ln | q j − q k | 2 . 4 π 1 ≤ j < k ≤ N Then the Hamiltonian system i X H Ω = d H gives the equations for point vortices: For j ∈ { 1 , . . . , N } . i q j − q k � q j = ˙ Γ k | q j − q k | 2 2 π 1 ≤ k ≤ N k � = j Tomoki Ohsawa (UT–Dallas) Georgia Tech 9 / 46

  14. Dynamics of 3 Point Vortices on R 2 Tomoki Ohsawa (UT–Dallas) Georgia Tech 10 / 46

  15. Dynamics of 3 Point Vortices on R 2 Tomoki Ohsawa (UT–Dallas) Georgia Tech 11 / 46

  16. Dynamics of 4 Point Vortices on R 2 Tomoki Ohsawa (UT–Dallas) Georgia Tech 12 / 46

  17. Shape Dynamics of Vortices on R 2 Distance between vortices: Γ 1 ℓ jk := | q j − q k | 12 Γ 2 Shape dynamics or Equations of relative motion: A 123 31 � � d ij = 2 1 − 1 � dt ℓ 2 Γ k A ijk , 23 ℓ 2 ℓ 2 π jk ki 1 ≤ l ≤ N Γ 3 i � = j � = k where A ijk = signed area of triangle defined by vortices ( i , j , k ) Tomoki Ohsawa (UT–Dallas) Georgia Tech 13 / 46

  18. Shape Dynamics of Vortices on R 2 Distance between vortices: Γ 1 ℓ jk := | q j − q k | 12 Γ 2 Shape dynamics or Equations of relative motion: A 123 31 � � d ij = 2 1 − 1 � dt ℓ 2 Γ k A ijk , 23 ℓ 2 ℓ 2 π jk ki 1 ≤ l ≤ N Γ 3 i � = j � = k where A ijk = signed area of triangle defined by vortices ( i , j , k ) Goal Is shape dynamics also Hamiltonian? Geometric structure behind it? Tomoki Ohsawa (UT–Dallas) Georgia Tech 13 / 46

  19. Background: Lie Groups and Lie Algebras G : = T g e G G = Lie group e “continuous transformations” g := T e G = Lie algebra of G “infinitesimal transformations” g ∗ = dual of Lie algebra g Tomoki Ohsawa (UT–Dallas) Georgia Tech 14 / 46

  20. Background: Lie Groups and Lie Algebras G : = T g e G G = Lie group e “continuous transformations” g := T e G = Lie algebra of G “infinitesimal transformations” g ∗ = dual of Lie algebra g Example: 3D rotation group SO(3) Rotations: � � R ∈ R 3 × 3 | R T R = I , det R = 1 G = SO(3) = Angular velocities: � � ξ ∈ R 3 × 3 | ξ T = − ξ ∼ = R 3 g = so (3) = T I SO(3) = Tomoki Ohsawa (UT–Dallas) Georgia Tech 14 / 46

  21. SE(2) -Action on the Plane R 2 Lie group SE(2) := SO(2) ⋉ R 2 �� R θ � cos θ � � � a − sin θ , θ ∈ [0 , 2 π ) , a ∈ R 2 = | R θ = 0 1 sin θ cos θ = All rotations of R 2 and translations of R 2 combined SE(2)-action on R 2 : x Tomoki Ohsawa (UT–Dallas) Georgia Tech 15 / 46

  22. SE(2) -Action on the Plane R 2 Lie group SE(2) := SO(2) ⋉ R 2 �� R θ � cos θ � � � a − sin θ , θ ∈ [0 , 2 π ) , a ∈ R 2 = | R θ = 0 1 sin θ cos θ = All rotations of R 2 and translations of R 2 combined SE(2)-action on R 2 : x R θ x θ Tomoki Ohsawa (UT–Dallas) Georgia Tech 15 / 46

  23. SE(2) -Action on the Plane R 2 Lie group SE(2) := SO(2) ⋉ R 2 �� R θ � cos θ � � � a − sin θ , θ ∈ [0 , 2 π ) , a ∈ R 2 = | R θ = 0 1 sin θ cos θ = All rotations of R 2 and translations of R 2 combined SE(2)-action on R 2 : R θ x + a a x R θ x θ Tomoki Ohsawa (UT–Dallas) Georgia Tech 15 / 46

  24. SE(2) -Symmetry of N Point Vortices The Hamiltonian H is invariant under the SE(2)-action. ⇒ The system of N point vortices is invariant under the SE(2)-action. = 2 3 1 3 2 a 2 1 3 1 θ These configurations are essentially the same because the shape of the vortices is the same. Tomoki Ohsawa (UT–Dallas) Georgia Tech 16 / 46

  25. SE(2) -Symmetry of N Point Vortices The Hamiltonian H is invariant under the SE(2)-action. ⇒ The system of N point vortices is invariant under the SE(2)-action. = 2 3 1 3 2 a 2 1 3 1 θ These configurations are essentially the same because the shape of the vortices is the same. ⇒ After “dividing” it by SE(2), all that matters is the shape of point = vortices. Tomoki Ohsawa (UT–Dallas) Georgia Tech 16 / 46

  26. Background: Noether’s Theorem Suppose G Lie group and g its Lie algebra G acts on a symplectic manifold P in a canonical manner Then one may define a corresponding map J : P → g ∗ called a momentum map . Theorem (Noether) If a Hamiltonian system on P has a G-symmetry, then J is a conserved quantity of the Hamiltonian system. Tomoki Ohsawa (UT–Dallas) Georgia Tech 17 / 46

  27. Simple Example: A Free Particle on the Plane Configuration space R 2 = { x = ( x 1 , x 2 ) } Symplectic manifold T ∗ R 2 = { ( x , p ) = ( x 1 , x 2 , p 1 , p 2 ) } H = 1 Hamiltonian H : T ∗ R 2 → R ; 2 m ( p 2 1 + p 2 2 ) Tomoki Ohsawa (UT–Dallas) Georgia Tech 18 / 46

  28. Simple Example: A Free Particle on the Plane Configuration space R 2 = { x = ( x 1 , x 2 ) } Symplectic manifold T ∗ R 2 = { ( x , p ) = ( x 1 , x 2 , p 1 , p 2 ) } H = 1 Hamiltonian H : T ∗ R 2 → R ; 2 m ( p 2 1 + p 2 2 ) Example Symmetry under translations by G = R 2 : ( x 1 , x 2 ) �→ ( x 1 + a , x 2 + b ). Momentum map J : T ∗ R 2 → R 2 ; J ( x , p ) = ( p 1 , p 2 ) = linear momentum Tomoki Ohsawa (UT–Dallas) Georgia Tech 18 / 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend