set theory
play

Set Theory Supartha Podder uOttawa Set Theory A set is an - PowerPoint PPT Presentation

Set Theory Supartha Podder uOttawa Set Theory A set is an unordered collection of objects called elements. 1/19 Set Theory A set is an unordered collection of objects called elements. Example: V= { a,e,i,o,u } , N = { 1 , 2 , 3 , } ,


  1. Subsets Power set of A is the set of all possible subsets of A . P ( A ) = { B : B ⊆ A } Example: Let A = { 1 , 2 } then P ( A ) = {∅ , { 1 } , { 2 } , { 1 , 2 }} . Statement T/F Statement T/F ∅ ∈ {∅} T ∅ ∈ {∅ , {∅}} T {∅} ∈ {∅} F {∅} ⊆ {∅} 4/19

  2. Subsets Power set of A is the set of all possible subsets of A . P ( A ) = { B : B ⊆ A } Example: Let A = { 1 , 2 } then P ( A ) = {∅ , { 1 } , { 2 } , { 1 , 2 }} . Statement T/F Statement T/F ∅ ∈ {∅} T ∅ ∈ {∅ , {∅}} T {∅} ∈ {∅} F {∅} ⊆ {∅} T {∅} ⊂ {∅} 4/19

  3. Subsets Power set of A is the set of all possible subsets of A . P ( A ) = { B : B ⊆ A } Example: Let A = { 1 , 2 } then P ( A ) = {∅ , { 1 } , { 2 } , { 1 , 2 }} . Statement T/F Statement T/F ∅ ∈ {∅} T ∅ ∈ {∅ , {∅}} T {∅} ∈ {∅} F {∅} ⊆ {∅} T {∅} ⊂ {∅} F {∅} ∈ {{∅}} 4/19

  4. Subsets Power set of A is the set of all possible subsets of A . P ( A ) = { B : B ⊆ A } Example: Let A = { 1 , 2 } then P ( A ) = {∅ , { 1 } , { 2 } , { 1 , 2 }} . Statement T/F Statement T/F ∅ ∈ {∅} T ∅ ∈ {∅ , {∅}} T {∅} ∈ {∅} F {∅} ⊆ {∅} T {∅} ⊂ {∅} F {∅} ∈ {{∅}} T {{∅}} ∈ {∅ , {∅}} 4/19

  5. Subsets Power set of A is the set of all possible subsets of A . P ( A ) = { B : B ⊆ A } Example: Let A = { 1 , 2 } then P ( A ) = {∅ , { 1 } , { 2 } , { 1 , 2 }} . Statement T/F Statement T/F ∅ ∈ {∅} T ∅ ∈ {∅ , {∅}} T {∅} ∈ {∅} F {∅} ⊆ {∅} T {∅} ⊂ {∅} F {∅} ∈ {{∅}} T {{∅}} ∈ {∅ , {∅}} {{∅}} ⊂ {{∅} , {∅}} F 4/19

  6. Subsets Power set of A is the set of all possible subsets of A . P ( A ) = { B : B ⊆ A } Example: Let A = { 1 , 2 } then P ( A ) = {∅ , { 1 } , { 2 } , { 1 , 2 }} . Statement T/F Statement T/F ∅ ∈ {∅} T ∅ ∈ {∅ , {∅}} T {∅} ∈ {∅} F {∅} ⊆ {∅} T {∅} ⊂ {∅} F {∅} ∈ {{∅}} T {{∅}} ∈ {∅ , {∅}} {{∅}} ⊂ {{∅} , {∅}} F F 4/19

  7. Venn Diagrams 5/19

  8. Venn Diagrams V = { a , e , i , o , u } . 5/19

  9. Venn Diagrams V = { a , e , i , o , u } . 5/19

  10. Venn Diagrams V = { a , e , i , o , u } . V = Complement of V . 5/19

  11. Venn Diagrams V = { a , e , i , o , u } . V = Complement of V . 5/19

  12. Venn Diagrams Set Intersection: A ∩ B = ∀ x { x ∈ A ∧ x ∈ B } . 6/19

  13. Venn Diagrams Set Intersection: A ∩ B = ∀ x { x ∈ A ∧ x ∈ B } . 6/19

  14. Venn Diagrams Set Intersection: A ∩ B = ∀ x { x ∈ A ∧ x ∈ B } . Set Union: A ∪ B = ∀ x { x ∈ A ∨ x ∈ B } . 6/19

  15. Venn Diagrams Set Intersection: A ∩ B = ∀ x { x ∈ A ∧ x ∈ B } . Set Union: A ∪ B = ∀ x { x ∈ A ∨ x ∈ B } . 6/19

  16. Venn Diagrams Set Difference: A \ B = ∀ x { x ∈ A ∧ x / ∈ B } . 7/19

  17. Venn Diagrams Set Difference: A \ B = ∀ x { x ∈ A ∧ x / ∈ B } . 7/19

  18. Venn Diagrams Set Difference: A \ B = ∀ x { x ∈ A ∧ x / ∈ B } . Symmetric Difference: A △ B = { ( A \ B ) ∪ ( B \ A ) } . 7/19

  19. Venn Diagrams Set Difference: A \ B = ∀ x { x ∈ A ∧ x / ∈ B } . Symmetric Difference: A △ B = { ( A \ B ) ∪ ( B \ A ) } . 7/19

  20. Example Let A = { 1 , 2 , 3 , 5 } , B = { 2 , 4 , 8 } . 8/19

  21. Example Let A = { 1 , 2 , 3 , 5 } , B = { 2 , 4 , 8 } . A ∩ B = 8/19

  22. Example Let A = { 1 , 2 , 3 , 5 } , B = { 2 , 4 , 8 } . A ∩ B = { 2 } . A \ B = 8/19

  23. Example Let A = { 1 , 2 , 3 , 5 } , B = { 2 , 4 , 8 } . A ∩ B = { 2 } . A \ B = { 1 , 3 , 5 } A ∪ B = 8/19

  24. Example Let A = { 1 , 2 , 3 , 5 } , B = { 2 , 4 , 8 } . A ∩ B = { 2 } . A \ B = { 1 , 3 , 5 } A ∪ B = { 1 , 2 , 3 , 4 , 5 , 8 } . 8/19

  25. Cartesian Product Cartesian Product of A and B : 9/19

  26. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } 9/19

  27. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . 9/19

  28. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . Let A = { 1 , 2 } , B = { a , b , c } . 9/19

  29. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . Let A = { 1 , 2 } , B = { a , b , c } . A × B = { (1 , a ) , (1 , b ) , (1 , c ) , (2 , a ) , (2 , b ) , (2 , c ) } 9/19

  30. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . Let A = { 1 , 2 } , B = { a , b , c } . A × B = { (1 , a ) , (1 , b ) , (1 , c ) , (2 , a ) , (2 , b ) , (2 , c ) } Is A × B = B × A ? 9/19

  31. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . Let A = { 1 , 2 } , B = { a , b , c } . A × B = { (1 , a ) , (1 , b ) , (1 , c ) , (2 , a ) , (2 , b ) , (2 , c ) } Is A × B = B × A ? No (not always). 9/19

  32. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . Let A = { 1 , 2 } , B = { a , b , c } . A × B = { (1 , a ) , (1 , b ) , (1 , c ) , (2 , a ) , (2 , b ) , (2 , c ) } Is A × B = B × A ? No (not always). A 1 × A 2 × · · · × A n = { ( a 1 , a 2 , · · · , a n ) | a i ∈ A i , 1 ≤ i ≤ n } . 9/19

  33. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . Let A = { 1 , 2 } , B = { a , b , c } . A × B = { (1 , a ) , (1 , b ) , (1 , c ) , (2 , a ) , (2 , b ) , (2 , c ) } Is A × B = B × A ? No (not always). A 1 × A 2 × · · · × A n = { ( a 1 , a 2 , · · · , a n ) | a i ∈ A i , 1 ≤ i ≤ n } . A 2 = A × A . 9/19

  34. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . Let A = { 1 , 2 } , B = { a , b , c } . A × B = { (1 , a ) , (1 , b ) , (1 , c ) , (2 , a ) , (2 , b ) , (2 , c ) } Is A × B = B × A ? No (not always). A 1 × A 2 × · · · × A n = { ( a 1 , a 2 , · · · , a n ) | a i ∈ A i , 1 ≤ i ≤ n } . A 2 = A × A . A 2 = A × A = { (1 , 1) , (1 , 2) , (2 , 1) , (2 , 2) } . 9/19

  35. Cartesian Product Cartesian Product of A and B : A × B = { ( a , b ) : a ∈ A , b ∈ B } | A × B | = | A | · | B | . Let A = { 1 , 2 } , B = { a , b , c } . A × B = { (1 , a ) , (1 , b ) , (1 , c ) , (2 , a ) , (2 , b ) , (2 , c ) } Is A × B = B × A ? No (not always). A 1 × A 2 × · · · × A n = { ( a 1 , a 2 , · · · , a n ) | a i ∈ A i , 1 ≤ i ≤ n } . A 2 = A × A . A 2 = A × A = { (1 , 1) , (1 , 2) , (2 , 1) , (2 , 2) } . Disjoint: Two sets A and B are disjoint if they have no elements in common. e.g., A = { 1 , 3 , 5 , 9 } , B = { 2 , 13 , 4 , 7 } . 9/19

  36. Table of Set Identities A \ B = A ∩ B 10/19

  37. Table of Set Identities A \ B = A ∩ B A ∪ A = U 10/19

  38. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ 10/19

  39. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A 10/19

  40. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ 10/19

  41. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U 10/19

  42. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A 10/19

  43. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A 10/19

  44. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A 10/19

  45. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A A = A 10/19

  46. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A A = A A ∪ B = B ∪ A 10/19

  47. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A A = A A ∪ B = B ∪ A A ∩ B = B ∩ A 10/19

  48. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A A = A A ∪ B = B ∪ A A ∩ B = B ∩ A A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C 10/19

  49. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A A = A A ∪ B = B ∪ A A ∩ B = B ∩ A A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C 10/19

  50. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A A = A A ∪ B = B ∪ A A ∩ B = B ∩ A A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) 10/19

  51. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A A = A A ∪ B = B ∪ A A ∩ B = B ∩ A A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ B = A ∩ B 10/19

  52. Table of Set Identities A \ B = A ∩ B A ∪ A = U A ∪ A = ∅ A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A A ∪ A = A A ∩ A = A A = A A ∪ B = B ∪ A A ∩ B = B ∩ A A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ B = A ∩ B A ∩ B = A ∪ B 10/19

  53. Proof Using Venn Diagram Prove using Venn diagram that A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ). 11/19

  54. Proof Using Venn Diagram Prove using Venn diagram that A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ). 11/19

  55. Proof Using Venn Diagram Prove using Venn diagram that A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ). 11/19

  56. Proof Let A = { x ∈ R , x 2 − 3 x + 2 = 0 } . Prove that A ⊆ Z . 12/19

  57. Proof Let A = { x ∈ R , x 2 − 3 x + 2 = 0 } . Prove that A ⊆ Z . Proof: Let x ∈ A , then 12/19

  58. Proof Let A = { x ∈ R , x 2 − 3 x + 2 = 0 } . Prove that A ⊆ Z . Proof: Let x ∈ A , then x 2 − 3 x + 2 = 0 12/19

  59. Proof Let A = { x ∈ R , x 2 − 3 x + 2 = 0 } . Prove that A ⊆ Z . Proof: Let x ∈ A , then x 2 − 3 x + 2 = 0 x 2 − 2 x − x + 2 = 0 12/19

  60. Proof Let A = { x ∈ R , x 2 − 3 x + 2 = 0 } . Prove that A ⊆ Z . Proof: Let x ∈ A , then x 2 − 3 x + 2 = 0 x 2 − 2 x − x + 2 = 0 x ( x − 2) − ( x − 2) = 0 12/19

  61. Proof Let A = { x ∈ R , x 2 − 3 x + 2 = 0 } . Prove that A ⊆ Z . Proof: Let x ∈ A , then x 2 − 3 x + 2 = 0 x 2 − 2 x − x + 2 = 0 x ( x − 2) − ( x − 2) = 0 ( x − 2)( x − 1) = 0 12/19

  62. Proof Let A = { x ∈ R , x 2 − 3 x + 2 = 0 } . Prove that A ⊆ Z . Proof: Let x ∈ A , then x 2 − 3 x + 2 = 0 x 2 − 2 x − x + 2 = 0 x ( x − 2) − ( x − 2) = 0 ( x − 2)( x − 1) = 0 Thus x = { 1 , 2 } . 12/19

  63. Proof Prove that if A ⊆ B then A ∪ C ⊆ B ∪ C 13/19

  64. Proof Prove that if A ⊆ B then A ∪ C ⊆ B ∪ C Assume A ⊆ B . 13/19

  65. Proof Prove that if A ⊆ B then A ∪ C ⊆ B ∪ C Assume A ⊆ B . Take any x ∈ A ∪ C , 13/19

  66. Proof Prove that if A ⊆ B then A ∪ C ⊆ B ∪ C Assume A ⊆ B . Take any x ∈ A ∪ C , so, x ∈ A ∨ x ∈ C . 13/19

  67. Proof Prove that if A ⊆ B then A ∪ C ⊆ B ∪ C Assume A ⊆ B . Take any x ∈ A ∪ C , so, x ∈ A ∨ x ∈ C . By assumption, if x ∈ A then x ∈ B . 13/19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend