semi inclusive reactions n z nucleon momenta and pairing
play

Semi-Inclusive Reactions: N, Z, Nucleon momenta, and Pairing - PowerPoint PPT Presentation

Semi-Inclusive Reactions: N, Z, Nucleon momenta, and Pairing Lawrence Weinstein Old Dominion University N, Z and high momentum nucleons: 54-40 or Fight aka The CaFe Experiment Goal: understand pairing mechanisms in symmetric and


  1. Semi-Inclusive Reactions: N, Z, Nucleon momenta, and Pairing Lawrence Weinstein Old Dominion University

  2. N, Z and high momentum nucleons: “54-40 or Fight” aka “The CaFe Experiment” • Goal: understand pairing mechanisms in symmetric and asymmetric nuclei – Neutron skins – Connection to EMC effect • Method: Measure A (e,e’p) at low and hi missing momentum at kinematics sensitive to n ( k ) • Targets: D, 12 C, 40 Ca, 48 Ca, 54 Fe – Add p , n symmetrically from D to 12 C to 40 Ca – Add 8 neutrons from 40 Ca to 48 Ca – Add 6 protons from 48 Ca to 54 Fe 2 L. Weinstein, EMC SRC MIT 2016

  3. N, Z and high momentum nucleons: “54-40 or Fight” aka “The CaFe Experiment” • Goal: understand pairing mechanisms in symmetric and asymmetric nuclei – Neutron skins 54 Fe + 6 Protons – Connection to EMC effect • Method: Measure A (e,e’p) at low and hi missing momentum at kinematics sensitive to n ( k ) • Targets: D, 12 C, 40 Ca, 48 Ca, 54 Fe – Add p , n symmetrically from D to 12 C to 40 Ca 48 Ca – Add 8 neutrons from 40 Ca to 48 Ca 40 Ca – Add 6 protons from 48 Ca to 54 Fe - 8 Neutrons 3 L. Weinstein, EMC SRC MIT 2016

  4. Adding neutrons to 40Ca Two models: • More neutrons, similar volume � larger p n • More neutrons, more np pairs � larger p p With Correlations +8% 40 Ca 48 Ca No Correlations -12% L. Weinstein, EMC SRC MIT 2016 4 M. Vanhalst, et al., J. Phys. G 42 , 055104 (2015)

  5. Adding neutrons to 40Ca Two models: • More neutrons, similar volume � larger p n • More neutrons, more np pairs � larger p p Integrated momentum density 1.20E+00 1.00E+00 protons N2LO 8.00E-01 Larger p n saturation 6.00E-01 neutrons 4.00E-01 2.00E-01 0.00E+00 0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00 1.40E+00 1.60E+00 1.80E+00 2.00E+00 0.5 1.5 2.0 0.0 1.0 sum p sum n 5 L. Weinstein, EMC SRC MIT 2016 Hagen et al, Nature Phys 12 , p186 (2015)

  6. Focusing on 48 Ca Momentum space: Coordinate space: [CREX] [CaFe] 0.15 – 0.3 fm No SRC + nn-SRC Proton + np-SRC Neutron Adding correlations: • Reduce the radius. • Inverts the momentum skin? Proton Neutron Proton Neutron M. Vanhalst, et al., J. Phys. G 42 , 055104 (2015) L. Weinstein, EMC SRC MIT 2016 6

  7. Focusing on 48 Ca Momentum space: Coordinate space: [CREX] [CaFe] 0.15 – 0.3 fm No SRC Depends on pairing mechanisms in asymmetric + nn-SRC Proton + np-SRC nuclei! Neutron Adding correlations: • Reduce the radius. • Inverts the momentum skin? Proton Neutron Proton Neutron 7 M. Vanhalst, et al., J. Phys. G 42 , 055104 (2015) 16

  8. The CaFe Triplet: A Lab for Asymmetric Nuclei 54 Fe 48 Ca has a 40 Ca 48 Ca 40% neutron excess!! L. Weinstein, EMC SRC MIT 2016 8

  9. The CaFe Triplet: A Lab for Asymmetric Nuclei Nucleus Z N 20 20 Symmetric double magic 40 Ca 20 28 + Full neutron shell (1f 7/2 ) 48 Ca 26 28 Almost symmetric double 54 Fe magic How do the neutrons from the outer 1f 7/2 shell correlate with the 40 Ca core? 9 24 L. Weinstein, EMC SRC MIT 2016

  10. What do we already know? (e,e’) cross-section ratios at x B >1 are sensitive to the TOTAL NUMBER OF SRC PAIRS: 1.44 1.2 ~5% norm 0.96 uncertainty not shown => 48 Ca: + 20% nucleons, +20% SRC pairs! 10 Z. Ye Ph.D. Thesis, UVA. arXiv: 1408.5861 Z. Ye, JLab Users Group Meeting Talk (2016)

  11. What do we already know? (e,e’) cross-section ratios at x B >1 are sensitive to the TOTAL NUMBER OF SRC PAIRS: 1.44 1.2 Due to the extra 8 neutrons 0.96 The neutrons in the outer 1f 7/2 shell (i.e. in the skin) are 11 equally correlated as the nucleons in the 40 Ca core! Z. Ye Ph.D. Thesis, UVA. arXiv: 1408.5861 Z. Ye, JLab Users Group Meeting Talk (2016) 26

  12. What do we already know? (e,e’) cross-section ratios at x B >1 are sensitive to the TOTAL NUMBER OF SRC PAIRS: 1.4 The crust neutrons form MANY SRC pairs! 1.2 Due to the extra 8 neutrons [What types? What’s their impact?] 1.0 The neutrons in the outer 1f 7/2 shell (i.e. in the skin) are 12 equally correlated as the nucleons in the 40 Ca core! Z. Ye Ph.D. Thesis, UVA. arXiv: 1408.5861 Z. Ye, JLab Users Group Meeting Talk (2016) 27

  13. detect the proton (e,e’p) Cross section factorizes (in PWIA): d σ p miss , E miss ) d σ free = KS ( ! dE e d Ω e dT p d Ω p d Ω Complications: E miss = ν − T p − T A − 1 • Rescattering of the outgoing proton. p miss = ! ! q − ! p p = − ! • Off-shell proton cross-section. p initial • Meson Exchange Currents (MEC). • Delta production (i.e. IC). => Spectral function is not an observable! d σ / K d σ free S D ( ! p miss , E miss ) = dE e d Ω e dT p d Ω p d Ω Compare cross sections for high (SRC) and low (MF) missing momentum protons in various nuclei 13 L. Weinstein, EMC SRC MIT 2016

  14. R = σ Full / σ PWIA Minimizing FSI ( ) 3 He e , e ' p 500 MeV/c Full = PWIA + FSI Sargsian Θ rq = angle between q 400 MeV/c and recoil d ( e , e ’ p ) 200 MeV/c 20 40 60 80 100 120 θ nq = 35 o θ rq θ nq = 75 o Avoid rescaaering Full peak at θ rq ≈ 70 o PWIA 0.1 0.5 0.5 0.1 14 P miss (GeV/c) Boeglin et al., PRL 107 (2011) 262501 L. Weinstein, EMC SRC MIT 2016

  15. Optimizing (e,e’p) kinematics • E beam = 11 GeV @ 40 uA to maximize rates. • 1 H, 2 H, 12 C, 40 Ca, 48 Ca, and 54 Fe targets. • Q 2 ≈ 3.5 GeV 2 – Reduces non-nucleonic currents (MEC, IC). – Proton energies high enough for Glauber FSI calculahons. • x B = Q 2 /2mω > 1.2 to minimize non-nucleonic currents. • θ rq < 50 o to minimize FSI. • Two Kinemahcs: – 350 < p miss < 600 MeV/c (“SRC”) – p miss < 250 MeV/c (“Mean-Field”) L. Weinstein, EMC SRC MIT 2016 15

  16. “Observables” • Distorted spectral funchons ( i.e. , reduced σ) – Need theory support to interpret • Double rahos of σ ( SRC ) / σ ( MF ) A 1 σ ( SRC ) / σ ( MF ) A 2 – � extra SRC p from A 1 to A 2 • e.g.: from 40 to 48Ca � np pairs created by 8 more n – Reduced transparency (FSI) correchons – Compare symmetric and asymmetric nuclei • 40 and 48Ca; 6 and 7Li • d, C, Ca, Fe 16 L. Weinstein, EMC SRC MIT 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend