secretary problem secretary problem
play

Secretary Problem Secretary Problem Mohammad Mahdian R. Preston - PowerPoint PPT Presentation

Secretary Problem Secretary Problem Mohammad Mahdian R. Preston McAfee David Pennock Secretary Admin problem Observe a sequence of candidates Rejected candidates cant be recalled Examples: jobs, air fare, spouse Examples:


  1. Secretary Problem Secretary Problem Mohammad Mahdian R. Preston McAfee David Pennock

  2. Secretary Admin problem • Observe a sequence of candidates • Rejected candidates can’t be recalled • Examples: jobs, air fare, spouse • Examples: jobs, air fare, spouse • T potential candidates

  3. Classic Solution • Dynkin, 1963 • Goal: Maximize probability of finding the best • Observe k = T/e candidates and reject them • Set an aspiration level max { v , …, v } • Set an aspiration level max { v 1 , …, v k } • Search until meeting or exceeding the aspiration level • Nothing beats this on every distribution in the limit as T gets large.

  4. Dynkin Applied to Spouse Search • 70 years to search • Search for 25¾ years • Best observed set as aspiration level • Best observed set as aspiration level • Continue search until finding one or exhaust candidates – 51½ years of search – 37% (1/ e ) chance of failure

  5. Problems • Reject excellent candidates at T -1 –Consequence of maximizing probability of identifying top candidate • Time of acquisition doesn’t matter • Once and for all decision • Extreme distribution

  6. Hire Secretary • Period of need T . • Hire at t, employ secretary from t to T • Discount factor δ ≤ 1 • Discount factor δ ≤ 1 • If you hire in period j a secretary of value v , you obtain − δ j − δ T T 1 ∑ δ = t v v − δ 1 = t j

  7. Assumptions • Distribution F of values, iid draws • F (0)=0 • Aspiration strategy is used • Aspiration strategy is used –Observe distribution for k periods then set max as a min target

  8. Expected Payoff • The expected payoff of the aspiration strategy is  ∞ ∞ − δ j − δ T − T 1 1 ∑ ∑ ∫ ∫ ∫ ∫   − − − π π = = k j k kF kF y y f f y y F F y y xf xf x x dx dx 1 1 ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )   − δ  1 = + j k 1 y 0  ∞ ∫  + δ − − − T T k F y x f x dx dy 1 1 ( ) ( )   0

  9. Reduction − − δ T δ j − δ T − k T 1 1 1 1 1 1 ∑ ∫ ∫ − − − π = + j F z dz k F z z dz 1 1 1 ( ) ( ) k − − − δ T j 1 1 1 = + j k 1 0 0   δ − − δ − − δ T − j j T z 1 T 1 1 1 1 ∑ ∑ ∫ ∫     = = − + + F F z z k k dz dz 1 ( ( ) )     − − − δ T j  1 1 1  = + j k 1 0

  10. Difference  − δ − − δ j j T z 1 m 1 1 ∑ ∫ π − π = − F z k 1  ( ) k m − − δ j  1 1 = + j k 1 0    δ − − δ − − δ T j j T z m 1 1 1 ∑ ∑     − − − − + + m m k k dz dz   ( ( ) )     − − − − − − δ δ T T j j   1 1 1 1 1 1   = + j k 1 • For m>k , β =[ • ] satisfies –Negative at 0 –If decreasing, stays decreasing

  11. π m , m>k Maximize π π π k – π π π π • Strategy: Minimize π k – π m and conclude it is negative • Note F -1 is non-decreasing 1 1 • Lemma: Suppose for all a , ∫ β ≤ z dz ( ) 0 a Then π k – π m ≥ 0.

  12. Proof of Lemma 1 ∫ π − π = − β F z z dz 1 ( ) ( ) k m 0 y 1 ∫ ∫ ∫ ∫ ≤ ≤ − β β + + − β β F F z z z z dz dz F F z z z z dz dz 1 1 ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) x y y 1 1 ∫ ∫ ∫ ≤ − β + − β = − β F y z dz F y z dz F y z dz 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) x y x

  13. Standard Trick 1 ∫ β ≤ z dz ( ) 0 a • is equivalent to β (1) ≤ 0, or δ j − δ T δ j − δ T − − T T 1 1 ∑ ∑ ≤ k m j j = = j k j m

  14. Theorem δ j − δ T − T 1 ∑ k • Suppose k* maximizes j = j k then π k* – π m ≤ 0 for all m>k*. − − T T j 1 ∑ Corollary: for δ =1, k* = arg max k j = j k and k*/ T ≈ 0.203

  15. Conclusions: Spouse Search • T = 70 years • 10% annual discount • Search for 4.1 years • Search for 4.1 years

  16. Hazard Rate • Standard approach permits very long tails − • F 1 ( ) • Impose hazard rate: nondecreas ing ( • • f f ( ) ) • No discounting, one time acquistion

  17. Same Starting Attack • The expected payoff of the aspiration strategy is  ∞ ∞ − T 1 ∑ ∑ ∫ ∫ ∫ ∫   − − − π π = = k j k kF kF y y f f y y F F y y xf xf x x dx dx 1 1 ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )   k k  = + j k 1 y  ∞ 0 ∫  + − − T k F y x f x dx dy 1 ( ) ( )   0   − j z 1 T 2 1 ∑ ∫   = − + F z k dz 1 ( )   − T j  1  = j k 0

  18. Integrate by Parts   − j z 1 T 2 1 ∑ ∫   π − π = − + − k F z z dz 1 ( )   + k k − T j 1  1  = + j k 1 0   ′ + + k − j z z z 1 T 1 1 2 ∑ ∑ ∫ ∫     = = − − − − − − − F F z z dz dz 1 ( ( ) )     + − + k T j j  1 1 ( 1 )  = + j k 1 0

  19. Integrate by Parts   − j z 1 T 2 1 ∑ ∫   π − π = − + − k F z z dz 1 ( )   + k k − T j 1  1  = + j k 1 0   ′ + + k − j z z z 1 T 1 1 2 ∑ ∑ ∫ ∫     = = − − − − − − − F F z z dz dz 1 ( ( ) )     + − + k T j j  1 1 ( 1 )  = + j k 1 0   ′ + + − i − i z z 1 T T 1 1 3 3 ∑ ∑ ∫   = − − − F z z dz 1 ( )( 1 )   + − i T   1 1 = = i k i 0 0 − T 2 1 1 1 ∑ = + • Use the fact + − + k T j j 1 1 ( 1 ) = + j k 1

  20. Hazard Rate ′ − F x 1 ( ) − − = F z z 1 ( )( 1 ) f x ( ) + + i i − − T z T z 1 1 3 3 ∑ ∑ ∑ ∑ β β = = − − z z • Let • Let ( ( ) ) + − i T 1 1 = = i k i 0 ′ 1 ∫ π − π = − − β F z z z dz 1 • Then ( )( 1 ) ( ) + k k 1 0

  21. Hazard Rate ′ − F x 1 ( ) − − = F z z 1 ( )( 1 ) f x ( ) + + i i − − T z T z 1 1 3 3 ∑ ∑ ∑ ∑ β β = = − − z z • Let • Let ( ( ) ) + − i T 1 1 = = i k i 0 ′ 1 ∫ π − π = − − β F z z z dz 1 • Then ( )( 1 ) ( ) + k k 1 0 nondecreasing

  22. Properties of β • If k<( T -1)/ e , β (1)>0 • If β (1)>0, β (z)>0 iff z>z* • Lemma: Suppose β (z)>0 iff z>z*. 1 1 ∫ ∫ β ≤ β ≤ If z dz then x z z dz ( ) 0 , max ( ) ( ) 0 ′ ≥ x 0 0 0

  23. Applying the Lemma 1 ∫ β ≤ π − π ≤ If z dz then ( ) 0 , 0 + k k 1 0 − T 1 1 1 1 1 ∑ ∑ ∫ ∫ β β = = − − z z dz dz • But • But ( ( ) ) + + − − k k T T i i 1 1 1 1 = i 1 0 − T 1 ≥ − π − π ≤ If k 1 , 0 + k k − T 1 1 ∑ 1 i = i 1

  24. Observations − 1 − T • Maximal discovery is 1 Log T ( ) • At T =10 6 , 6.9% • Formula exact for exponential • Formula exact for exponential

  25. Comparison � � � �� ���� � � ������� ������ � ����� ������ ����� ������ �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ���� � � �� ��� ��� ��� �!��� � � � � ��� ��� ��� ��!��� � � ��� ��� ��� ���

  26. Optimal Search • Given distribution, choose so that ∞ ∫ = + + v F c v xf x dx max ( ) ( ) t t 1 c c • So that c=v t+1, and ∞ ∫ = + − v v F x dx 1 ( ) + t t 1 v t + 1

  27. Conclusions • For problem of which ad to run • Ads are durable • Discounting fairly irrelevant • Discounting fairly irrelevant • Examine distribution, compute bound • Uniform distribution ( ) = + − ≈ − k T T * ½ 4 1 3 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend