search for the electric dipole moment of the neutron at
play

Search for the electric dipole moment of the neutron at PSI Vira - PowerPoint PPT Presentation

Search for the electric dipole moment of the neutron at PSI Vira Bondar Paul Scherrer Institute on behalf of the nEDM-Collaboration Int. Workshop on Probing Fundamental Symmetries and Interactions with UCN 1 11-15 April 2016, JGU Mainz nEDM


  1. Search for the electric dipole moment of the neutron at PSI Vira Bondar Paul Scherrer Institute on behalf of the nEDM-Collaboration Int. Workshop on Probing Fundamental Symmetries and Interactions with UCN 1 11-15 April 2016, JGU Mainz

  2. nEDM Collaboration about 50 members from 7 countries and 14 institutions Belgium USA KUL, Leuven UKY, Lexington France • LPC, Caen UK • LPSC, Grenoble • CSNSM,Paris US,Brighton nEDM Germany • PTB, Berlin Switzerland • GUM, Mainz • PSI,Villigen Poland • IKC,Mainz • ETH,Zurich • FRAP, Fribourg • JUC,Cracow • HNI,Cracow 2

  3. Overview  Motivation (remind)  Setup  Statistical sensitivity  Key systematic issues  Recent developments & applications  Summary and future plans 3

  4. Remind of the motivation Searching for neutron electric Non zero EDM From Sakharov’s theses dipole moment (nEDM) violates T and CP RAL-Sussex-ILL : Baryon asymmetry of the Universe Expectation from Big Bang: d n < 3 x 10 – 26 e cm (90%CL) n B / n g ~ 10 -18 ? Cosmological observations: C.A.Baker et al., PRL 97 (2006) 131801; n B / n g ~ 10 -10 J.M. Pendlebury et al., PRD 92 (2015) 092003 4

  5. Ultracold neutrons (UCN) for nEDM search    Storable neutrons ( d n )  2 TE N (UCN) Gravity Strong 102 neV/m 350 neV (↔ 8 m/s ↔ 3 mK) V  Nb  V F 350 neV Storage properties are material dependent Magnetic ∼ 60 neV/T E. Fermi & W.H. Zinn(1946), 5 Y. B. Zeldovich, Sov. Phys. JETP ( 1959) 389

  6. Experimental setup Passive Magnetic Precession Chamber Shielding (4 layers) (UCN & Hg) Cs magnetometers HV Electrode Vacuum Tank Mercury Mercury lamp polarizing cell Magnetic field Mercury lamp coils UCN Switch Polarized UCN Spin Analyzers & Detectors S. Afach et al. J. Appl. Phys. 116 (2014) 084510 S. Afach et al., EPJA(2015), A 51 (2015) 143 6 C.A. Baker et al., NIMA 736(2014) 184

  7. Experimental setup          Δ μ  2 d E E 2 B B     n n B 0 =1 μ T E= ± 1MV/m S. Afach et al. J. Appl. Phys. 116 (2014) 084510 S. Afach et al., EPJA(2015), A 51 (2015) 143 7 C.A. Baker et al., NIMA 736(2014) 184

  8. Statistical sensitivity RAL/Sx/ILL PSI 2015 Sensitivity: best avg best avg E-field (kV/cm) 10 8.3 11 11  Visibility of resonance Neutrons * 18 000 14 300 14 800 10350 T Time of free precession T free , s 130 130 180 180 N Number of neutrons T duty , s 240 240 300 300 E Electric field strength α ** 0.6 0.453 0.8 0.75   25 10 , ecm 2.3 3.0 1.1 1.9 *Talk of B. Lauss 8 **Talk of E. Wursten

  9. Statistical sensitivity RAL/Sx/ILL PSI 2015 Sensitivity: best avg best avg E-field (kV/cm) 10 8.3 11 11  Visibility of resonance Neutrons * 18 000 14 300 14 800 10350 T Time of free precession T free , s 130 130 180 180 N Number of neutrons T duty , s 240 240 300 300 E Electric field strength α ** 0.6 0.453 0.8 0.75   25 10 , ecm 2.3 3.0 1.1 1.9 1.7 × 10 -26 e cm 9

  10. Systematics 10

  11. Systematic effects Main source: Magnetic field stability and homogeneity   1        Δ μ      2 B B f n 11 Hz    2 T N   d n    n 2 E E        B 400 fT    11

  12. Systematic effects Main source: Magnetic field stability and homogeneity   1        Δ μ      2 B B f n 11 Hz    2 T N   d n    n 2 E E        B 400 fT    Control over magnetic field*: Mercury co-magnetometer Cs magnetometer array (volume averaged field) (spatial field distribution) K. Green et al. , Nucl. Instr. Methods Phys. Res., Sect. A 404 , 381 (1998)  f B   n n n R  f B Hg Hg Hg 12 *Talks of G. Bison and M. Kasprzak

  13. Systematic effects Beauties of mercury co-magnetometer ~50pT before correction ~ 1pT after correction ~50pT ~1pT

  14. Systematic effects Nothing is perfect: Beauties of mercury but… …drawbacks co-magnetometer • Different density distribution for UCN & Hg • Geometric phase effect (vxE) ~50pT before correction • Non-adiabaticity for Hg atoms ~ 1pT after correction ~50pT Crossing point analysis takes ~1pT these effects into account 14

  15. Systematic effects 1. Shift of center of gravity 2. Geometric phase effect: interplay of motional magnetic field (vxE) and magnetic field gradients which translates into false EDM:  B    false 27 z d 1 . 122 10 e cm /( pT / cm )  Hg z  B    false , Hg 27 z d 4 . 418 10 e cm /( pT / cm )  n z S. Afach et al. EPJD 69, 225 (2015) 15

  16. 3. Hg atoms sample the field non-adiabatically, whereas neutrons are adiabatic 16

  17. R-curves analysis Measurements: apply a magnetic field gradient & measure R depending on gradient monitoring it with Cs-magnetometers B up B down h  0  R R g z B 0 17

  18. Corrections of R  f           R ( 1 ) n n  Grav T Earth Hg f Hg Hg Gravitational shift δ Grav Transverse fields δ T due to mercury non-adiabaticity due to different center ( υ UCN << υ Hg ) of mass for UCN & Hg Field maps   B h     6 2 ( 1 . 0 0 . 2 ) 10 , B   B    up T   Grav z B   T  2 B  6 ( 0 . 8 0 . 3 ) 10 , B 0 199 Hg & UCN 0 down Earth rotation δ Earth Mercury light shift δ Hg   γ f f       induced by the light beam B 0 6   ( 0 . 34 0 . 18 ) 10   δ n  Earth Earth  sin λ   Hg Earth γ f f that detects the Hg free-   Hg n Hg       λ 6 ( 0 . 21 0 . 14 ) 10 induction decay.    6 Hg 5.3 10 18

  19. Byproducts Neutron to 199 Hg magnetic ratio S. Afach et al., PLB 739 (2014) 128 B up B down h     h 0 . 235 ( 5 ) cm ,    R R ( 1 g ) 0 z B   R 3 . 8424583 ( 27 ), 0 +Search for axion-like particles h   0    R R ( 1 g )   0 z R 3 . 8424562 ( 30 ). B 0 0 S.Afach et al., PLB 745 (2015)58 +corrections 19

  20. New understandings… 20

  21. Gravitational depolarization ? Gravitationally enhanced depolarization → and associated frequency shift → S.Afach et al., PRD 92(2015)052008 B0 up B0 down Cs extracted gradient (pT/cm) Relative UCN dephasing in different energy bins -> change of frequency 21

  22. Gravitational depolarization ? Gravitationally enhanced depolarization Revised experimental upper limit → and associated frequency shift on the electric dipole moment of the neutron → S.Afach et al., PRD 92(2015)052008 J. M. Pendlebury et al., PRD 92(2015) 092003 B0 up B0 down Height difference only Anticipated false EDM (10 -26 ecm) With gravitational depolarizaiton Linear fit to data Cs extracted gradient (pT/cm) R'(ppm)   Relative UCN dephasing in different  26 d n 3 . 0 10 ecm ( 90 % CL ) energy bins -> change of frequency 22

  23. How to probe gravitational depolarization? 23

  24. Spin-echo spectroscopy Polarization A spin-echo method recovers energy dependent dephasing for T = 2t 1 in a magnetic field with vertical gradient . g z Impact on:  nEDM limit  Neutron lifetime • Estimation of UCN energy spectrum • Access to vertical gradient offset 24 S.Afach et al., PRL114(2015)162502

  25. Spin-echo application Gradiometry: For each field configuration measure UCNSE before and after nEDM run. Fit UCNSE with “standard spectrum” measured once. Extract gradient offset. Spectrometry: 25

  26. Towards n2EDM Improvements: • Double chamber setup • New mu-metal shield • Better UCN statistics • Improved magnetometry Expected new limit: ~ factor of 10 better Optimistic time scale: ~ mid-end 2018 26

  27. Summary and outlook  Improved performance of UCN source  Optimization of magnetic field conditions  Improved control over systematic effects nEDM data  Gravity revised we are taking data  Spin-echo spectrometry with so far best sensitivity New methods Sensitivity Stat Syst Tot & understandings RAL/Sx/ILL(2015) 1.53 0.99 1.82 End of 2016: PSI(2015) 1.65 0.36 1.69 we expect statistical sensitivity of σ ~1x10 -26 ecm n2EDM 2018 onwards 27

  28. “Be realistic: plan for a miracle!” Osho Thank you! 28

  29. Backup 29

  30. The Ramsey’s technique Sensitivity 30

  31. Measurement Principle of the nEDM for B 0 = const. Stabilization and monitoring of the magnetic field on the ~ 10 fT level is essential! 31

  32. Spin-echo: analysis strategy Measurement Extraction UCN energy spectrum Gradient offsets Result 32

  33. Systematics 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend