scalability analysis of the distributed memory
play

Scalability analysis of the distributed-memory implementation of the - PowerPoint PPT Presentation

Scalability analysis of the distributed-memory implementation of the Aggregated unfitted Finite Element Method (AgFEM) Alberto F. Martn , Santiago Badia, Francesc Verdugo, Eric Neiva MWNDEA 2020, Melbourne, Australia, 12/02/2020 Embedded


  1. Scalability analysis of the distributed-memory implementation of the Aggregated unfitted Finite Element Method (AgFEM) Alberto F. Martín ∗ , Santiago Badia, Francesc Verdugo, Eric Neiva MWNDEA 2020, Melbourne, Australia, 12/02/2020

  2. Embedded Finite elements CutFEM, Finite Cell Method, AgFEM, X-FEM, ... body-fitted mesh unfitted mesh ✔ Simplified mesh generation Alberto F . Martín (Monash University) MWNDEA2020 2/35

  3. Embedded Finite elements CutFEM, Finite Cell Method, AgFEM, X-FEM, ... body-fitted mesh unfitted mesh ✔ Simplified mesh generation ✘ Dirichlet BC? ✘ Numerical integration? ✘ ill-conditioning? (this talk) Alberto F . Martín (Monash University) MWNDEA2020 2/35

  4. Parallel distributed-memory simulation pipeline 1. Unfitted (adaptive) Cartesian grids (p4est) Alberto F . Martín (Monash University) MWNDEA2020 3/35

  5. Parallel distributed-memory simulation pipeline 1. Unfitted (adaptive) Cartesian grids (p4est) 2. Partition using space filling-curves (p4est) Alberto F . Martín (Monash University) MWNDEA2020 3/35

  6. Parallel distributed-memory simulation pipeline 1. Unfitted (adaptive) Cartesian grids (p4est) 2. Partition using space filling-curves (p4est) 3. Unfitted FE discretization (AgFEM) 4. AMG linear solver (PETSc) Alberto F . Martín (Monash University) MWNDEA2020 3/35

  7. Unfitted methods at large scales: pros and cons ✔ Highly scalable mesh generation based on octrees (e.g. p4est ) Alberto F . Martín (Monash University) MWNDEA2020 4/35

  8. Unfitted methods at large scales: pros and cons ✔ Highly scalable mesh generation based on octrees (e.g. p4est ) ✔ Highly scalable mesh partition with space-filling curves (Parmetis not needed) Alberto F . Martín (Monash University) MWNDEA2020 4/35

  9. Unfitted methods at large scales: pros and cons ✔ Highly scalable mesh generation based on octrees (e.g. p4est ) ✔ Highly scalable mesh partition with space-filling curves (Parmetis not needed) ✔ Highly scalable adaptive mesh refinement + load balancing Alberto F . Martín (Monash University) MWNDEA2020 4/35

  10. Unfitted methods at large scales: pros and cons ✔ Highly scalable mesh generation based on octrees (e.g. p4est ) ✔ Highly scalable mesh partition with space-filling curves (Parmetis not needed) ✔ Highly scalable adaptive mesh refinement + load balancing ✘ Not guaranteed that highly scalable linear solvers keep their optimal properties for cut elements. Alberto F . Martín (Monash University) MWNDEA2020 4/35

  11. PETSc CG + AMG preconditioner on unfitted meshes Poisson equation (weak scaling test with 5 meshes) AMG+AgFEM AMG + Naive un fi tted FEM* 16 16 14 14 GC iterations GC iterations 12 12 10 10 8 8 6 6 4 4 10 3 10 4 10 5 10 6 10 7 10 8 10 3 10 4 10 5 10 6 10 7 10 8 DOFs DOFs * Nitsche BCs + modified integration in cut cells Alberto F . Martín (Monash University) MWNDEA2020 5/35

  12. Why linear solvers are affected by cut cells? Condition number estimates (Poisson Eq.) (a) Body-fitted case (b) Naive unfitted FEM k 2 ( A ) ∼ | η | − (2 p +1 − 2 k 2 ( A ) ∼ h − 2 d ) "small cut cell problem" Alberto F . Martín (Monash University) MWNDEA2020 6/35

  13. Possible remedies Fix the linear solver Taylor your parallel solver to deal with k 2 ( A ) ∼ | η | − (2 p +1 − 2 /d ) Example: [S. Badia, F . Verdugo. Robust and scalable domain decomposition solvers for unfitted finite element methods. Journal of Computational and Applied Mathematics (2018) ]. Fix the linear system (this talk) Enhance the unfitted FE method so that k 2 ( A ) ∼ h − 2 Use a standard scalable solver Examples: CutFEM, AgFEM Alberto F . Martín (Monash University) MWNDEA2020 7/35

  14. Agenda 1. The AgFEM method (serial case) 2. Parallel implementation 3. Performance of parallel AgFEM + AMG solvers Alberto F . Martín (Monash University) MWNDEA2020 8/35

  15. Agenda 1. The AgFEM method (serial case) 2. Parallel implementation 3. Performance of parallel AgFEM + AMG solvers Alberto F . Martín (Monash University) MWNDEA2020 9/35

  16. AgFEM method for the Poisson Eq. � − ∆ u = f in Ω u = u D on ∂ Ω Alberto F . Martín (Monash University) MWNDEA2020 10/35

  17. Weak imposition of Dirichlet BCs Nitsche’s Method Find u h ∈ V h such that ∀ v h ∈ V h a h ( u h , v h ) = l h ( v h ) ( v h does not vanish on ∂ Ω !) where � � ∇ u h · ∇ v h − ( ∇ u h · n ) v h � � a h ( u h , v h ) := K ∩ Ω F K ∈T act F ∈T act ∩ ∂ Ω h h � � u h ( ∇ v h · n ) + u h v h � � βh − 1 − F F ∂ Ω F ∈ ( T act F ∈ ( T act ∩ ∂ Ω) ∩ ∂ Ω) h h � � � f v h + u D v h − ∇ v h · n � � � l h ( v h ) := βh − 1 u D � � F K ∩ Ω F F K ∈T act F ∈ ( T act F ∈ ( T act ∩ ∂ Ω) ∩ ∂ Ω) h h h The key feature of AgFEM is the definition of the discrete space V h Alberto F . Martín (Monash University) MWNDEA2020 11/35

  18. Starting point: "naive" FE space V std := { u ∈ C 0 (Ω act ) : u | K ∈ Q p ( K ) ∀ K ∈ T act } h h T act , Ω act V std h h Alberto F . Martín (Monash University) MWNDEA2020 12/35

  19. Aggregated FE space Basic idea: improve conditioning by removing problematic DOFs     V agg � :=  u ∈ V h : u × = C × • u • ∀ × ∈ P h  •∈ masters( × ) • well-posed dofs × problematic dofs ( P ) Alberto F . Martín (Monash University) MWNDEA2020 13/35

  20. Definition of constraints via cell aggregates Alberto F . Martín (Monash University) MWNDEA2020 14/35

  21. Definition of constraints via cell aggregates 1. Generate cell aggregates (1 interior cell + several cut cells) Alberto F . Martín (Monash University) MWNDEA2020 14/35

  22. Definition of constraints via cell aggregates 1. Generate cell aggregates (1 interior cell + several cut cells) 2. Define dof to root cell map root( × ) via the aggregates Alberto F . Martín (Monash University) MWNDEA2020 14/35

  23. Definition of constraints via cell aggregates 1. Generate cell aggregates (1 interior cell + several cut cells) 2. Define dof to root cell map root( × ) via the aggregates 3. Define constraints: φ root( × ) � u × = ( x × ) u • • •∈ dofs(root( × )) Alberto F . Martín (Monash University) MWNDEA2020 14/35

  24. Results for the unfitted aggregated FEM (Poisson Eq.) 1 κ ( A ) ≤ c 1 h − 2 (Condition number bound) β ≤ c 2 h − 2 (Nitsche’s penalty coef.) � u − u h � H 1 (Ω) ≤ c 3 h p (Optimal convergence order) � u − u h � L 2 (Ω) ≤ c 4 h p +1 (Optimal convergence order) and others (inverse/trace inequalities, bound of aggregate size, bound of the extended solution, ...) 1 [Badia, Verdugo, Martín. The aggregated unfitted finite element method for elliptic problems. Comput. Methods Appl. Mech. Eng. (2018).] Alberto F . Martín (Monash University) MWNDEA2020 15/35

  25. 30 p=1, standard p=2, standard p=1, aggr. 25 p=2, aggr. log10(condest(A)) 20 15 10 5 0 0.3 0.4 0.5 0.6 0.7 ℓ Alberto F . Martín (Monash University) MWNDEA2020 16/35

  26. 30 p=1, standard 25 p=2, standard p=1, aggr. log10(condest(A)) p=2, aggr. 20 15 10 5 0 0.3 0.4 0.5 0.6 0.7 ℓ Alberto F . Martín (Monash University) MWNDEA2020 17/35

  27. Convergence test 1 1 0 0 -1 -1 -2 -2 log10(Error energy norm) log10(Error energy norm) -3 -3 -4 -4 -5 -5 -6 -6 p=1, standard p=1, standard p=2, standard p=2, standard p=1, aggr. p=1, aggr. p=2, aggr. p=2, aggr. -7 -7 slope 1 slope 1 slope 2 slope 2 -8 -8 -2.5 -2 -1.5 -1 -2.5 -2 -1.5 -1 log10(h) log10(h) (a) 2D (b) 3D Alberto F . Martín (Monash University) MWNDEA2020 18/35

  28. Extension to the Stokes problem 2 75 . 0 | u | 0 . 0  − ∆ u + ∇ p = f in Ω    ∇ · u = 0 in Ω   u = 0 on Γ D     ( ∇ u − pI ) · n = g on Γ N  2 [Badia, Martín, Verdugo. Mixed aggregated finite element methods for the unfitted discretization of the stokes problem. SIAM J. Sci. Comput., 40(6). 2018.] Alberto F . Martín (Monash University) MWNDEA2020 19/35

  29. Alberto F . Martín (Monash University) MWNDEA2020 20/35

  30. 40 ❆❣❣r❡❣❛t❡❞ 35 ❙t❛♥❞❛r❞ log 10 ( ❝♦♥❞❡st ( A )) 30 25 20 15 10 5 0 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 ℓ 40 35 log 10 ( ❝♦♥❞❡st ( A )) 30 25 ❆❣❣r❡❣❛t❡❞ 20 ❙t❛♥❞❛r❞ 15 10 5 0 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 ℓ Alberto F . Martín (Monash University) MWNDEA2020 21/35

  31. − 2 − 2 − 2 � � � − 3 − 3 − 3 � u h − u � H 1 � u h − u � L 2 � p h − p � L 2 � u � H 1 � u � L 2 � p � L 2 − 4 − 4 − 4 � � � log 10 log 10 log 10 − 5 − 5 − 5 ❆❣❣r❡❣❛t❡❞ ❆❣❣r❡❣❛t❡❞ ❆❣❣r❡❣❛t❡❞ ❙t❛♥❞❛r❞ ❙t❛♥❞❛r❞ ❙t❛♥❞❛r❞ s❧♦♣❡ ✲✷ s❧♦♣❡ ✲✸ s❧♦♣❡ ✲✷ − 6 − 6 − 6 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 � (DOF) 1 /d � � (DOF) 1 /d � � (DOF) 1 /d � log 10 log 10 log 10 Alberto F . Martín (Monash University) MWNDEA2020 22/35

  32. Agenda 1. The AgFEM method (serial case) 2. Parallel implementation 3. Performance of parallel AgFEM + AMG solvers Alberto F . Martín (Monash University) MWNDEA2020 23/35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend