satisfiability over cross
play

Satisfiability over Cross Product is NP NP R -complete Christian - PowerPoint PPT Presentation

Satisfiability over Cross Product is NP NP R -complete Christian Herrmann, Johanna Sokoli, Martin Ziegler Re Remi mind nder er: : Co Comp mplex exity ty Th Theo eory ry P := { L { 0 , 1 }* decidable in polynomial time }


  1. Satisfiability over Cross Product is NP NP R -complete º Christian Herrmann, Johanna Sokoli, Martin Ziegler

  2. Re Remi mind nder er: : Co Comp mplex exity ty Th Theo eory ry P := { L  { 0 , 1 }* decidable in polynomial time }  NP NP := { L verifiable in polynomial time }  PSP SPAC ACE := { L decidable in polyn. space } Def: Call L verifiable in polynomial time if L = { x  { 0 , 1 } n | n  N ,  y  { 0 , 1 } q ( n ) :  x , y  V } for some V  P and q  N [ N ] . discrete "witness" Examples: 2-CNF 3SAT = {  : Boolean formula  in 3-CNF in 3-CNF 3 2  P  NP NP admits a satisfying assignment }  NP NP 3COL = {  G  : graph G admits a 3-coloring}  NP NP HC = {  G  : G has a Hamiltonian cycle}  P  NP NP EC = {  G  : G has a Eulerian cycle } Martin Ziegler 2

  3. Re Remi mind nder er: : NP NP -co comp mplet eteness eness P := { L  { 0 , 1 }* decidable in polynomial time }  NP := { L verifiable in polynomial time } Def: Polynom. reduction from A to B  { 0 , 1 }* is a f :{ 0 , 1 }*  { 0 , 1 }* computab. in polytime such that x  A  f ( x )  B . Write A ¹ p B . • A ¹ p B, B ¹ p C  A ¹ p C NP c (e.g. • A ¹ p B, B  P  A  P 3SAT) NP • For any L  NP , L ¹ p SAT (S. Cook / L. Levin 70ies) P • SAT ¹ p 3SAT, HC, 3COL… Martin Ziegler 3

  4. Tu Turing ring vs vs. . BS BSS S Ma Mach chine ine Discrete: Turing Machine / Random-Access Machine ( TM/RAM ) Input/output: finite sequence of bits { 0 , 1 }* or integers  Z * Each memory cell holds one element of R ={0,1} / R = Z R ? º `Program' can store finitely many constants from R operates on R (for TM :  ,  ,  ; for RAM :  ,  ,  ,  ) Computation on algebras/structures [Tucker&Zucker], [Poizat] on R *:=  U k R k : Algebra ( R ,  ,  ,  ,  ,<) → real-RAM , BSS-machine [Blum&Shub&Smale'89],[Blum&Cucker&Shub&Smale'98] P R  NP NP R  EXP XP R (Tarski Quantifier Elimination) strict? º º º NP R -complete: Does a given NP int. real º polynom.system have a real root? H  R * real Halting problem Undecidable, too: Mandelbrot Set, Newton starting points Martin Ziegler 4

  5. Tu Turing ring vs vs. . BS BSS S Co Comp mplexity lexity NP R -complete: Does a given multivariate ° NP integer polynomial have a real root? The heor orem em [Canny'88, Grigoriev'88, Heintz&Roy& ° &Solerno'90, Renegar'92]: NP NP R  PS PSPACE PACE ("efficient real quantifier elimination") No 'better' (e.g. in PH ) algorithm known to-date! ° (Allender, B ü rgisser, Kjeldgaard-Pedersen, Miltersen ‘ 06: P R  CH ) Similarly with integer root: undecidable (Matiyasevich ‘ 70) Similarly with rational root: unknown (e.g. Poonen'09) Simil. with complex root: coRP NP mod GRH (Koiran'96) Martin Ziegler 5

  6. NP R ‒ Completeness Completeness NP ⁰ ⁰ QSAT R : Given a term t ( X 1 ,.. X n ) over  ,  ,  , does it have a satisfying assignment C.Herrmann& over subspaces of R ³/ C ³? M.Z. 2011 FEAS R : Given a system of n -variate ⁰ integer polynomial in-/equalities, does it have a real solution? ⁰ CONV R : … , is the solution set convex? P. Koiran'99 ⁰ Tod oday ay: DIM R : … of dimension n ? The following problem is NP R -complete: N.E.Mnëv (80ies), 0 QUAD R : Given p  Z [ X 1 ,…, X n ] of total ⁰ J. Richter-Gebert'99 degree 4, does it have a real root? Given a term t ( X 1 ,… X n ) over  only, • Is a given oriented matroid realizable? Peter W. Shor'91 does the equation t ( X 1 ,… X n ) = X 1 • Is a given arrangement of pseudolines, stretchable? have a solution over R ³\{0} ? • Certain geometric properties of graphs M. Schaefer 2010 Martin Ziegler 6

  7. Cr Cross oss Pr Prod oduct uct i in n R ³ ( a x , a y , a z )  ( b x , b y , b z ) = ( a y ·b z -a z ·b y , a z ·b x -a x ·b z , a x ·b y -a y ·b z ) a  b ( parallel)  ( ( ( a  b )  a )  a )  ( a  b ) = 0  a  b = 0 ( ( a  b )  a )  a a  b ( a  b )  a b a | a  b | = | a |·| b |· sin  ( a , b ) a  b  a , anti -commutative, non -associative. Martin Ziegler 7

  8. Decision cision Problem blems s with th Cross ss Product duct Theorem: a) to c) and a') to b') are all equivalent ( a x , a y , a z )  ( b x , b y , b z ) = ( a y ·b z -a z ·b y , a z ·b x -a x ·b z , a x ·b y -a y ·b z ) to Polynomial Identity Testing  RP RP ( randomized polytime with one-sided error, Schwartz-Zippel) ( ( ( a  b )  a )  a )  ( a  b ) = 0 d) to f) are all NP NP R -complete 0 d') to f') are equivalent to Hilbert's 10th Problem over Q built from  only: Given a term t ( V 1 ,… V n ) terms and s ( V 1 ,.. V n ) a) Is there an assignment v 1 ,…, v n  R ³ s.t. t ( v 1 ,.. v n )  0 ? In particular there exists a cross product equation t ( v 1 ,.. v n )= v 1  0 satisfiable over R ³ but not over Q ³. b) Is there an assignment v j  R ³ s.t. t ( v 1 ,.. v n )  s ( v 1 ,.. v n ) ? c) Is there an assignment v j  R ³ s.t. t ( v 1 ,.. v n )= e z ? d) Is there an assignment v j  R ³ s.t. t ( v 1 ,.. v n )= v 1  0 ? e) Is there an assignment v j  R ³ s.t. t ( v 1 ,..)  v 1  0 ? f) Is there an assignment v j  R ³ s.t. t ( v 1 ,.. v n )  s ( v 1 ,.. v n ) ? a') to f') similarly but for assignments  Q ³ Martin Ziegler 8

  9. Pr Proof oof (S (Ske ketch, tch, har hardne dness ss) 0 QUAD AD R (Does given p  Z [ X 1 ,.. X n ] have a real root?) ¹ p e) e) Is there an assignment v j  F ³ s.t. t ( v 1 ,.. v n ) ≈ v 1 ≠ 0 ? any go nal For the standard right-handed ortho norm al basis e 1 , e 2 , e 3 of F ³ and for r , s  F , the following are easily verified: • F ( e 1 - r·s e 2 ) = F e 3  [ F ( e 3 - r · e 2 )  F ( e 1 - s · e 3 ) ] Encode s  F • F ( e 1 - s· e 3 ) = F e 2  [ F ( e 2 - e 3 )  F ( e 1 - s · e 2 ) ] as affine as projective line ( e 1 - s· e 2 ) point F ( e 1 - s· e 2 ) • F ( e 3 - s· e 2 ) = F e 1  [ F ( e 1 - e 3 )  F ( e 1 - r · e 2 ) ] • e 1 -( r - s ) · e 2 = e 3  [ ( [( e 2 - e 3 )  ( e 1 - r · e 2 )]  [ e 2  ( e 1 - s e 3 ) ] )  e 3 ] • F ( e 1 - e 3 ) = F e 2  [ F ( e 1 - e 2 )  F ( e 2 - e 3 ) ] Can thus express the arithmetic operations · and - using the cross product and F e 1 and F e 2 and F ( e 1 - e 2 ) and F ( e 2 - e 3 ) . Martin Ziegler 9

  10. Pr Proof oof (S (Ske ketch, tch, har hardne dness ss) 0 QUAD AD R (Does given p  Z [ X 1 ,.. X n ] have a real root?) ¹ p e) e) Is there an assignment v j  F ³ s.t. t ( v 1 ,.. v n ) ≈ v 1 ≠ 0 ? any For the standard right-handed ortho go nal basis e 1 , e 2 , e 3 of F ³, can express  and · using cross product and F e 1 and F e 2 and F ( e 1 - e 2 ) and F ( e 2 - e 3 ) . Encode s  F as projective as affine point F ( e 1 - s· e 2 ) line e 1 - s· e 2 ↝ terms V 1 ( A , B , C ) , V 2 ( A , B,C ) , V 12 ( A , B , C ) , V 23 ( A , B,C ) that for any assignment A,B,C  P² F , either coincide with F e 1 = A and F e 2 and F ( e 1 - e 2 ) and F ( e 2 - e 3 ) for some right-handed orthogonal basis e i ‒ or evaluate to 0 . Using these terms, one can express (in polytime) any given p  Z [ X 1 ,…, X n ] as term t p ( Y 1 ,…, Y n ; A , B , C ) over  s.t. p ( s 1 ,…, s n )=0  t p ( F ( e 1 - s 1 · e 2 ),…, F ( e 1 - s n · e 2 ); A , B , C ) = A Martin Ziegler 10

  11. Co Conc nclusion lusion • Identified a new problem complete for NP R 0 • defined over  only, i.e. conceptionally simplest • normal form for equations over  : t ( Z 1 ,…, Z n )= Z 1 NP R is an important Turing (!) complexity class as NP 0 currently developping into similarly rich structural theory [Baartse&Meer'13] PCP Theorem for NP over the Reals Question: Graph Colorin ing being NP -complete, how about Qu Quantum tum Gr Graph Co Coloring ng ? [LeGall'13] Using these terms, one can express (in polytime) any given p  Z [ X 1 ,…, X n ] as term t p ( Y 1 ,…, Y n ; A , B , C ) over  s.t. p ( s 1 ,…, s n )=0  t p ( F ( e 1 - s 1 · e 2 ),…, F ( e 1 - s n · e 2 ); A , B , C ) = A Martin Ziegler 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend