οΏ½ οΏ½ many smaller improvements: The clock Examples β scientific papers. β‘ of these algorithms for reaking RSA-1024, RSA-2048: , 2 170 , CFRAC; β , 2 160 , LS; β β , 2 150 , QS; β 2 112 , NFS. β Miller βUse of This is the curve β 2 + β‘ 2 = 1. curves in cryptographyβ: Warning: extremely unlikely This is not an elliptic curve. an βindex calculusβ attack βElliptic curveβ β» = βellipse.β elliptic curve method ever be able to work.β
οΏ½ οΏ½ smaller improvements: The clock Examples of points β papers. β‘ algorithms for RSA-1024, RSA-2048: β CFRAC; β LS; β β QS; β NFS. βUse of This is the curve β 2 + β‘ 2 = 1. cryptographyβ: Warning: unlikely This is not an elliptic curve. calculusβ attack βElliptic curveβ β» = βellipse.β curve method to work.β
οΏ½ οΏ½ rovements: The clock Examples of points on this curve: β β‘ for RSA-2048: β β β β β This is the curve β 2 + β‘ 2 = 1. cryptographyβ: Warning: This is not an elliptic curve. attack βElliptic curveβ β» = βellipse.β d
οΏ½ οΏ½ The clock Examples of points on this curve: β‘ β This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ β This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. β This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. β This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. ( οΏ½ 1 β 0) = β9:00β. β This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. ( οΏ½ 1 β 0) = β9:00β. β£ ( 3 β 4 β 1 β 2) = β This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. ( οΏ½ 1 β 0) = β9:00β. β£ ( 3 β 4 β 1 β 2) = β2:00β. β This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. ( οΏ½ 1 β 0) = β9:00β. β£ ( 3 β 4 β 1 β 2) = β2:00β. β£ β (1 β 2 β οΏ½ 3 β 4) = This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. ( οΏ½ 1 β 0) = β9:00β. β£ ( 3 β 4 β 1 β 2) = β2:00β. β£ β (1 β 2 β οΏ½ 3 β 4) = β5:00β. β£ ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. ( οΏ½ 1 β 0) = β9:00β. β£ ( 3 β 4 β 1 β 2) = β2:00β. β£ β (1 β 2 β οΏ½ 3 β 4) = β5:00β. β£ ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. This is the curve β 2 + β‘ 2 = 1. Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. ( οΏ½ 1 β 0) = β9:00β. β£ ( 3 β 4 β 1 β 2) = β2:00β. β£ β (1 β 2 β οΏ½ 3 β 4) = β5:00β. β£ ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. This is the curve β 2 + β‘ 2 = 1. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). Warning: This is not an elliptic curve. βElliptic curveβ β» = βellipse.β
οΏ½ οΏ½ The clock Examples of points on this curve: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. ( οΏ½ 1 β 0) = β9:00β. β£ ( 3 β 4 β 1 β 2) = β2:00β. β£ β (1 β 2 β οΏ½ 3 β 4) = β5:00β. β£ ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. This is the curve β 2 + β‘ 2 = 1. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). (3 β 5 β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). Warning: (4 β 5 β 3 β 5). ( οΏ½ 4 β 5 β 3 β 5). This is not an elliptic curve. (4 β 5 β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). βElliptic curveβ β» = βellipse.β Many more.
οΏ½ οΏ½ clock Examples of points on this curve: Addition (0 β 1) = β12:00β. β‘ β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. β β P β β β‘ ( οΏ½ 1 β 0) = β9:00β. β β β£ ( 3 β 4 β 1 β 2) = β2:00β. P β β β‘ β β£ β β (1 β 2 β οΏ½ 3 β 4) = β5:00β. β£ β ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. P β β β‘ β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. the curve β 2 + β‘ 2 = 1. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). β 2 + β‘ 2 (3 β 5 β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). rning: β = sin β β‘ β (4 β 5 β 3 β 5). ( οΏ½ 4 β 5 β 3 β 5). not an elliptic curve. (4 β 5 β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). βElliptic curveβ β» = βellipse.β Many more.
οΏ½ οΏ½ Examples of points on this curve: Addition on the clo (0 β 1) = β12:00β. β‘ β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. neutral β β P β β β‘ ( οΏ½ 1 β 0) = β9:00β. β β 1 β β£ ( 3 β 4 β 1 β 2) = β2:00β. β P β β β‘ β β β β β β β β£ β β β β β P (1 β 2 β οΏ½ 3 β 4) = β5:00β. P P P P β£ β ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. P β β β‘ β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. β 2 + β‘ 2 = 1. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). β 2 + β‘ 2 = 1, parametrized (3 β 5 β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). β = sin β , β‘ = cos β (4 β 5 β 3 β 5). ( οΏ½ 4 β 5 β 3 β 5). elliptic curve. (4 β 5 β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). β» = βellipse.β Many more.
οΏ½ οΏ½ β» Examples of points on this curve: Addition on the clock: (0 β 1) = β12:00β. β‘ β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. neutral = (0 β β P 1 = ( β β β‘ ( οΏ½ 1 β 0) = β9:00β. β β 1 β β β£ ( 3 β 4 β 1 β 2) = β2:00β. β P 2 = β β β‘ β β β β β β β β β β£ β β β β P β (1 β 2 β οΏ½ 3 β 4) = β5:00β. P P P P P P β£ β ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. P 3 = ( β β β‘ β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). β β‘ = 1. β 2 + β‘ 2 = 1, parametrized b (3 β 5 β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). β = sin β , β‘ = cos β . (4 β 5 β 3 β 5). ( οΏ½ 4 β 5 β 3 β 5). e. (4 β 5 β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). βellipse.β Many more.
οΏ½ οΏ½ Examples of points on this curve: Addition on the clock: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) ( οΏ½ 1 β 0) = β9:00β. β β 1 β β β£ ( 3 β 4 β 1 β 2) = β2:00β. β P 2 = ( β 2 β β‘ 2 ) β β β β β β β β β β£ β β β P β (1 β 2 β οΏ½ 3 β 4) = β5:00β. P P P P P P β£ β ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. P 3 = ( β 3 β β‘ 3 ) β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). β 2 + β‘ 2 = 1, parametrized by (3 β 5 β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). β = sin β , β‘ = cos β . (4 β 5 β 3 β 5). ( οΏ½ 4 β 5 β 3 β 5). (4 β 5 β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). Many more.
οΏ½ οΏ½ Examples of points on this curve: Addition on the clock: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) ( οΏ½ 1 β 0) = β9:00β. β β 1 β β β£ ( 3 β 4 β 1 β 2) = β2:00β. β P 2 = ( β 2 β β‘ 2 ) β β β β β β β β β β£ β β β β P (1 β 2 β οΏ½ 3 β 4) = β5:00β. P P P P P P β£ β ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. P 3 = ( β 3 β β‘ 3 ) β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). β 2 + β‘ 2 = 1, parametrized by (3 β 5 β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). β = sin β , β‘ = cos β . Recall (4 β 5 β 3 β 5). ( οΏ½ 4 β 5 β 3 β 5). (sin( β 1 + β 2 ) β cos( β 1 + β 2 )) = (4 β 5 β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). Many more.
οΏ½ οΏ½ Examples of points on this curve: Addition on the clock: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) ( οΏ½ 1 β 0) = β9:00β. β β 1 β β β£ ( 3 β 4 β 1 β 2) = β2:00β. β P 2 = ( β 2 β β‘ 2 ) β β β β β β β β β β£ β β β β P (1 β 2 β οΏ½ 3 β 4) = β5:00β. P P P P P P β£ β ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. P 3 = ( β 3 β β‘ 3 ) β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). β 2 + β‘ 2 = 1, parametrized by (3 β 5 β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). β = sin β , β‘ = cos β . Recall (4 β 5 β 3 β 5). ( οΏ½ 4 β 5 β 3 β 5). (sin( β 1 + β 2 ) β cos( β 1 + β 2 )) = (4 β 5 β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). (sin β 1 cos β 2 + cos β 1 sin β 2 β Many more.
οΏ½ οΏ½ Examples of points on this curve: Addition on the clock: (0 β 1) = β12:00β. β‘ (0 β οΏ½ 1) = β6:00β. (1 β 0) = β3:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) ( οΏ½ 1 β 0) = β9:00β. β β 1 β β β£ ( 3 β 4 β 1 β 2) = β2:00β. β P 2 = ( β 2 β β‘ 2 ) β β β β β β β β β β£ β β β β P (1 β 2 β οΏ½ 3 β 4) = β5:00β. P P P P P P β£ β ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. P 3 = ( β 3 β β‘ 3 ) β£ β£ ( 1 β 2 β 1 β 2) = β1:30β. (3 β 5 β 4 β 5). ( οΏ½ 3 β 5 β 4 β 5). β 2 + β‘ 2 = 1, parametrized by (3 β 5 β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). β = sin β , β‘ = cos β . Recall (4 β 5 β 3 β 5). ( οΏ½ 4 β 5 β 3 β 5). (sin( β 1 + β 2 ) β cos( β 1 + β 2 )) = (4 β 5 β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). (sin β 1 cos β 2 + cos β 1 sin β 2 β Many more. cos β 1 cos β 2 οΏ½ sin β 1 sin β 2 ).
οΏ½ οΏ½ Examples of points on this curve: Addition on the clock: Clock addition β = β12:00β. β‘ β‘ β οΏ½ 1) = β6:00β. β = β3:00β. neutral = (0 β 1) β β β P 1 = ( β 1 β β‘ 1 ) P β β β‘ οΏ½ β 0) = β9:00β. β β β 1 β β β£ β β 1 β 2) = β2:00β. β P 2 = ( β 2 β β‘ 2 ) P β β β‘ β β β β β β β β β β β£ β β β β β P β β οΏ½ 3 β 4) = β5:00β. P P P P P P β£ β β οΏ½ β β οΏ½ 3 β 4) = β7:00β. P 3 = ( β 3 β β‘ 3 ) P β β β‘ β£ β£ β β 1 β 2) = β1:30β. β β β 5). ( οΏ½ 3 β 5 β 4 β 5). β 2 + β‘ 2 = 1, parametrized by Use Cartesian β β οΏ½ 4 β 5). ( οΏ½ 3 β 5 β οΏ½ 4 β 5). addition. β = sin β , β‘ = cos β . Recall β β β 5). ( οΏ½ 4 β 5 β 3 β 5). for the clo β β‘ (sin( β 1 + β 2 ) β cos( β 1 + β 2 )) = β β οΏ½ 3 β 5). ( οΏ½ 4 β 5 β οΏ½ 3 β 5). sum of ( β β β‘ β β β‘ (sin β 1 cos β 2 + cos β 1 sin β 2 β more. ( β 1 β‘ 2 + β‘ β β β‘ β‘ οΏ½ β β cos β 1 cos β 2 οΏ½ sin β 1 sin β 2 ).
οΏ½ οΏ½ οΏ½ oints on this curve: Addition on the clock: Clock addition without β β12:00β. β‘ β‘ β οΏ½ β6:00β. β neutral = (0 β 1) neutral β β β P 1 = ( β 1 β β‘ 1 ) P β β β‘ οΏ½ β β9:00β. β β β 1 β β β β£ β2:00β. β β β β β P 2 = ( β 2 β β‘ 2 ) P β β β‘ β β β β β β β β β β β β β β β β β£ β β β β β β P β P β β β οΏ½ β β5:00β. P P P P P P P P P P β£ β β οΏ½ β β οΏ½ β = β7:00β. P 3 = ( β 3 β β‘ 3 ) P β β β‘ β£ β£ β β β β1:30β. β β β οΏ½ β 5 β 4 β 5). β 2 + β‘ 2 = 1, parametrized by Use Cartesian coordinates β β οΏ½ β οΏ½ 3 β 5 β οΏ½ 4 β 5). addition. Addition β = sin β , β‘ = cos β . Recall β β β οΏ½ β 5 β 3 β 5). for the clock β 2 + β‘ (sin( β 1 + β 2 ) β cos( β 1 + β 2 )) = β β οΏ½ β οΏ½ 4 β 5 β οΏ½ 3 β 5). sum of ( β 1 β β‘ 1 ) and β β β‘ (sin β 1 cos β 2 + cos β 1 sin β 2 β ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β β cos β 1 cos β 2 οΏ½ sin β 1 sin β 2 ).
οΏ½ οΏ½ οΏ½ οΏ½ this curve: Addition on the clock: Clock addition without sin, cos: β β‘ β‘ β οΏ½ β neutral = (0 β 1) neutral = (0 β β β P 1 = ( β 1 β β‘ 1 ) P 1 = ( β β β‘ οΏ½ β β β β 1 β β β β β£ β β β β β P 2 = ( β 2 β β‘ 2 ) P 2 = β β β‘ β β β β β β β β β β β β β β β β β β β£ β β β β P β β β β P β β οΏ½ β P P P P P P P P P P P P β£ β β οΏ½ β β οΏ½ β β7:00β. P 3 = ( β 3 β β‘ 3 ) P 3 = ( β β β‘ β£ β£ β β β β β β οΏ½ β β β β 2 + β‘ 2 = 1, parametrized by Use Cartesian coordinates fo β β οΏ½ β οΏ½ β β οΏ½ β 5). addition. Addition formula β = sin β , β‘ = cos β . Recall β β β οΏ½ β β β for the clock β 2 + β‘ 2 = 1: (sin( β 1 + β 2 ) β cos( β 1 + β 2 )) = β β οΏ½ β οΏ½ β β οΏ½ β 5). sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) (sin β 1 cos β 2 + cos β 1 sin β 2 β ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). cos β 1 cos β 2 οΏ½ sin β 1 sin β 2 ).
οΏ½ οΏ½ οΏ½ οΏ½ Addition on the clock: Clock addition without sin, cos: β‘ β‘ neutral = (0 β 1) neutral = (0 β 1) β β P 1 = ( β 1 β β‘ 1 ) P 1 = ( β 1 β β‘ 1 ) β β β 1 β β β β β β P 2 = ( β 2 β β‘ 2 ) P 2 = ( β 2 β β‘ 2 ) β β β β β β β β β β β β β β β β β β β β β β β P β β P β P P P P P P P P P P P P β β P 3 = ( β 3 β β‘ 3 ) P 3 = ( β 3 β β‘ 3 ) β 2 + β‘ 2 = 1, parametrized by Use Cartesian coordinates for addition. Addition formula β = sin β , β‘ = cos β . Recall for the clock β 2 + β‘ 2 = 1: (sin( β 1 + β 2 ) β cos( β 1 + β 2 )) = sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is (sin β 1 cos β 2 + cos β 1 sin β 2 β ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). cos β 1 cos β 2 οΏ½ sin β 1 sin β 2 ).
οΏ½ οΏ½ οΏ½ οΏ½ Addition on the clock: Clock addition without sin, cos: Examples β2:00β + β‘ β‘ β£ β£ = ( 3 β 4 β β β β οΏ½ β β£ = ( οΏ½ 1 β 2 β οΏ½ β neutral = (0 β 1) neutral = (0 β 1) β β P 1 = ( β 1 β β‘ 1 ) P 1 = ( β 1 β β‘ 1 ) β5:00β + β β β 1 β β β β β β P 2 = ( β 2 β β‘ 2 ) P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ β οΏ½ β β β β β β β β β β β β β β β β β β β β β β β P β β β β P P P β£ = ( 3 β 4 β β P P P P P P P P P P β β P 3 = ( β 3 β β‘ 3 ) P 3 = ( β 3 β β‘ 3 ) β 3 β β β 5 β 4 2 β 5 β‘ 2 = 1, parametrized by Use Cartesian coordinates for β addition. Addition formula β sin β , β‘ = cos β . Recall for the clock β 2 + β‘ 2 = 1: β + β 2 ) β cos( β 1 + β 2 )) = sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is β cos β 2 + cos β 1 sin β 2 β ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). β cos β 2 οΏ½ sin β 1 sin β 2 ).
οΏ½ οΏ½ οΏ½ clock: Clock addition without sin, cos: Examples of clock β2:00β + β5:00β β‘ β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β β οΏ½ β β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) neutral = (0 β 1) neutral = (0 β 1) β β P 1 = ( β 1 β β‘ 1 ) P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β β β β β P 2 = ( β 2 β β‘ 2 ) P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + οΏ½ β β β β β β β β β β β β β β β β β β β P β P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P P P P β β P 3 = ( β 3 β β‘ 3 ) P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 2 = 25 β 5 Use Cartesian coordinates for β β‘ rametrized by addition. Addition formula β β β‘ cos β . Recall for the clock β 2 + β‘ 2 = 1: β β β cos( β 1 + β 2 )) = sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is β β cos β 1 sin β 2 β ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). β β οΏ½ sin β 1 sin β 2 ).
οΏ½ οΏ½ Clock addition without sin, cos: Examples of clock addition: β2:00β + β5:00β β‘ β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. (0 β 1) neutral = (0 β 1) β β ( β 1 β β‘ 1 ) P 1 = ( β 1 β β‘ 1 ) P β5:00β + β9:00β β β β β β β P = ( β 2 β β‘ 2 ) P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β β β P β P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β β P ( β 3 β β‘ 3 ) P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . 5 25 Use Cartesian coordinates for β β‘ by addition. Addition formula β β β‘ β ecall for the clock β 2 + β‘ 2 = 1: β β β β β )) = sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is β β β β 2 β ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). β β οΏ½ β β 2 ).
οΏ½ οΏ½ Clock addition without sin, cos: Examples of clock addition: β2:00β + β5:00β β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β P β β P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . 5 25 Use Cartesian coordinates for addition. Addition formula for the clock β 2 + β‘ 2 = 1: sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ).
οΏ½ οΏ½ Clock addition without sin, cos: Examples of clock addition: β2:00β + β5:00β β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β β P P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . 5 25 β 3 β β 117 β 5 β 4 125 β οΏ½ 44 Use Cartesian coordinates for 3 = . 5 125 addition. Addition formula for the clock β 2 + β‘ 2 = 1: sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ).
οΏ½ οΏ½ Clock addition without sin, cos: Examples of clock addition: β2:00β + β5:00β β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β P β P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . 5 25 β 3 β β 117 β 5 β 4 125 β οΏ½ 44 Use Cartesian coordinates for 3 = . 5 125 addition. Addition formula for the clock β 2 + β‘ 2 = 1: β 3 β β 336 β 5 β 4 625 β οΏ½ 527 4 = . 5 625 sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ).
οΏ½ οΏ½ Clock addition without sin, cos: Examples of clock addition: β2:00β + β5:00β β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β β P P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . 5 25 β 3 β β 117 β 5 β 4 125 β οΏ½ 44 Use Cartesian coordinates for 3 = . 5 125 addition. Addition formula for the clock β 2 + β‘ 2 = 1: β 3 β β 336 β 5 β 4 625 β οΏ½ 527 4 = . 5 625 sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is ( β 1 β β‘ 1 ) + (0 β 1) = ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ).
οΏ½ οΏ½ Clock addition without sin, cos: Examples of clock addition: β2:00β + β5:00β β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β β P P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . 5 25 β 3 β β 117 β 5 β 4 125 β οΏ½ 44 Use Cartesian coordinates for 3 = . 5 125 addition. Addition formula for the clock β 2 + β‘ 2 = 1: β 3 β β 336 β 5 β 4 625 β οΏ½ 527 4 = . 5 625 sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is ( β 1 β β‘ 1 ) + (0 β 1) = ( β 1 β β‘ 1 ). ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ).
οΏ½ οΏ½ Clock addition without sin, cos: Examples of clock addition: β2:00β + β5:00β β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β β P P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . 5 25 β 3 β β 117 β 5 β 4 125 β οΏ½ 44 Use Cartesian coordinates for 3 = . 5 125 addition. Addition formula for the clock β 2 + β‘ 2 = 1: β 3 β β 336 β 5 β 4 625 β οΏ½ 527 4 = . 5 625 sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is ( β 1 β β‘ 1 ) + (0 β 1) = ( β 1 β β‘ 1 ). ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). ( β 1 β β‘ 1 ) + ( οΏ½ β 1 β β‘ 1 ) =
οΏ½ οΏ½ Clock addition without sin, cos: Examples of clock addition: β2:00β + β5:00β β‘ β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β β P P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . 5 25 β 3 β β 117 β 5 β 4 125 β οΏ½ 44 Use Cartesian coordinates for 3 = . 5 125 addition. Addition formula for the clock β 2 + β‘ 2 = 1: β 3 β β 336 β 5 β 4 625 β οΏ½ 527 4 = . 5 625 sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is ( β 1 β β‘ 1 ) + (0 β 1) = ( β 1 β β‘ 1 ). ( β 1 β‘ 2 + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). ( β 1 β β‘ 1 ) + ( οΏ½ β 1 β β‘ 1 ) = (0 β 1).
οΏ½ οΏ½ addition without sin, cos: Examples of clock addition: Clocks over β2:00β + β5:00β β‘ β β β β β β β β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β β β β β β β β β β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β β β β β β β β β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β β β β β β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β β β β β β β β β P β P β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P P P β β β β β β β β β β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . β β β β β β β 5 25 Clock( F 7 β 3 β β 117 β 5 β 4 125 β οΏ½ 44 Cartesian coordinates for 3 = . β β ( β β β‘ ) β· β β β‘ 5 125 addition. Addition formula Here F 7 β’ β β β β β β β£ clock β 2 + β‘ 2 = 1: β 3 β β 336 β 5 β 4 625 β οΏ½ 527 4 = . = β’ 0 β 1 β 2 β β οΏ½ β οΏ½ β οΏ½ β£ 5 625 of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is with arit ( β 1 β β‘ 1 ) + (0 β 1) = ( β 1 β β‘ 1 ). β β‘ + β‘ 1 β 2 β β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). e.g. 2 β 5 β ( β 1 β β‘ 1 ) + ( οΏ½ β 1 β β‘ 1 ) = (0 β 1).
οΏ½ without sin, cos: Examples of clock addition: Clocks over finite fields β2:00β + β5:00β β‘ β β β β β β β β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β β β β β β β β β β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. neutral = (0 β 1) β β β β β β β β β P 1 = ( β 1 β β‘ 1 ) β5:00β + β9:00β β β β β β β β β β β β β P 2 = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β β β β β£ = ( 3 β 4 β 1 β 2) = β2:00β. P P P β β β β β β β β β β P 3 = ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . β β β β β β β 5 25 Clock( F 7 ) = β 3 β β 117 β 5 β 4 125 β οΏ½ 44 ordinates for 3 = . β β ( β β β‘ ) β· F 7 β F 7 β β‘ 5 125 Addition formula Here F 7 = β’ 0 β 1 β 2 β β β β β£ β + β‘ 2 = 1: β 3 β β 336 β 5 β 4 625 β οΏ½ 527 4 = . = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ β οΏ½ β£ 5 625 β β β‘ and ( β 2 β β‘ 2 ) is with arithmetic mo ( β 1 β β‘ 1 ) + (0 β 1) = ( β 1 β β‘ 1 ). β‘ β β β‘ β‘ 2 οΏ½ β 1 β 2 ). β β‘ e.g. 2 β 5 = 3 and β ( β 1 β β‘ 1 ) + ( οΏ½ β 1 β β‘ 1 ) = (0 β 1).
sin, cos: Examples of clock addition: Clocks over finite fields β2:00β + β5:00β β‘ β β β β β β β β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β β β β β β β β β β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. (0 β 1) β β β β β β β β β ( β 1 β β‘ 1 ) P β5:00β + β9:00β β β β β β β β β β β P = ( β 2 β β‘ 2 ) β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β β β£ = ( 3 β 4 β 1 β 2) = β2:00β. β β β β β β β β β β P ( β 3 β β‘ 3 ) β 3 β β 24 β 5 β 4 25 β 7 2 = . β β β β β β β 5 25 Clock( F 7 ) = β 3 β β 117 β 5 β 4 125 β οΏ½ 44 for 3 = . ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 β β 5 125 Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ β 3 β β 336 β 5 β 4 625 β οΏ½ 527 β β‘ 4 = . = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ 5 625 β β β‘ β β β‘ 2 ) is with arithmetic modulo 7. ( β 1 β β‘ 1 ) + (0 β 1) = ( β 1 β β‘ 1 ). β‘ β β β‘ β‘ οΏ½ β β ). β β‘ e.g. 2 β 5 = 3 and 3 β 2 = 5 in ( β 1 β β‘ 1 ) + ( οΏ½ β 1 β β‘ 1 ) = (0 β 1).
Examples of clock addition: Clocks over finite fields β2:00β + β5:00β β β β β β β β β£ β£ = ( 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) β β β β β β β β β β£ = ( οΏ½ 1 β 2 β οΏ½ 3 β 4) = β7:00β. β β β β β β β β β5:00β + β9:00β β β β β β β β β β β£ = (1 β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β£ = ( 3 β 4 β 1 β 2) = β2:00β. β β β β β β β β β β 3 β β 24 β 5 β 4 25 β 7 2 = . β β β β β β β 5 25 Clock( F 7 ) = β 3 β β 117 β 5 β 4 125 β οΏ½ 44 3 = . ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . 5 125 Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ β 3 β β 336 β 5 β 4 625 β οΏ½ 527 4 = . = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ 5 625 with arithmetic modulo 7. ( β 1 β β‘ 1 ) + (0 β 1) = ( β 1 β β‘ 1 ). e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 . ( β 1 β β‘ 1 ) + ( οΏ½ β 1 β β‘ 1 ) = (0 β 1).
Examples of clock addition: Clocks over finite fields Larger exa + β5:00β Examples β β β β β β β β£ β£ 3 β 4 β 1 β 2) + (1 β 2 β οΏ½ 3 β 4) on Clock( β β β β β β β β β β£ οΏ½ β 2 β οΏ½ 3 β 4) = β7:00β. 2(1000 β 2) β β β β β β β β β + β9:00β β β β β β β β β β β£ β 2 β οΏ½ 3 β 4) + ( οΏ½ 1 β 0) β β β β β β β β β£ 3 β 4 β 1 β 2) = β2:00β. β β β β β β β β β β β β 24 β β 4 25 β 7 = . β β β β β β β 5 25 Clock( F 7 ) = β β β 117 β β 4 125 β οΏ½ 44 = . ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . 5 125 Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ β β β 336 β β 4 625 β οΏ½ 527 = . = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ 5 625 with arithmetic modulo 7. β β β‘ ) + (0 β 1) = ( β 1 β β‘ 1 ). e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 . β β β‘ ) + ( οΏ½ β 1 β β‘ 1 ) = (0 β 1).
ck addition: Clocks over finite fields Larger example: Clo Examples of addition β β β β β β β β£ β£ β β β (1 β 2 β οΏ½ 3 β 4) on Clock( F 1000003 ): β β β β β β β β β β£ οΏ½ β β οΏ½ β 4) = β7:00β. 2(1000 β 2) = (4000 β β β β β β β β β β β β β β β β β β β£ β β οΏ½ β 4) + ( οΏ½ 1 β 0) β β β β β β β β β£ β β β β2:00β. β β β β β β β β β β β β 24 β 25 β 7 β . β β β β β β β 25 Clock( F 7 ) = β β β 117 β 125 β οΏ½ 44 β . ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . 125 Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ β β β 336 β 625 β οΏ½ 527 β . = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ 625 with arithmetic modulo 7. β β β‘ β = ( β 1 β β‘ 1 ). e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 . β β β‘ οΏ½ β β β‘ 1 ) = (0 β 1).
addition: Clocks over finite fields Larger example: Clock( F 1000003 Examples of addition β β β β β β β β£ β£ β β β β β οΏ½ 3 β 4) on Clock( F 1000003 ): β β β β β β β β β β£ οΏ½ β β οΏ½ β β7:00β. 2(1000 β 2) = (4000 β 7). β β β β β β β β β β β β β β β β β β£ β β οΏ½ β οΏ½ β 0) β β β β β β β β β£ β β β β β β β β β β β β β β β β β β β β β β β β β Clock( F 7 ) = β β β β β οΏ½ β . ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ β β β β β οΏ½ β . = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ with arithmetic modulo 7. β β β‘ β β β β‘ ). e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 . β β β‘ οΏ½ β β β‘ β 1).
Clocks over finite fields Larger example: Clock( F 1000003 ). Examples of addition β β β β β β β on Clock( F 1000003 ): β β β β β β β β β 2(1000 β 2) = (4000 β 7). β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β Clock( F 7 ) = ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ with arithmetic modulo 7. e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 .
Clocks over finite fields Larger example: Clock( F 1000003 ). Examples of addition β β β β β β β on Clock( F 1000003 ): β β β β β β β β β 2(1000 β 2) = (4000 β 7). β β β β β β β β 4(1000 β 2) = (56000 β 97). β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β Clock( F 7 ) = ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ with arithmetic modulo 7. e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 .
Clocks over finite fields Larger example: Clock( F 1000003 ). Examples of addition β β β β β β β on Clock( F 1000003 ): β β β β β β β β β 2(1000 β 2) = (4000 β 7). β β β β β β β β 4(1000 β 2) = (56000 β 97). β β β β β β β β β 8(1000 β 2) = (863970 β 18817). β β β β β β β β β β β β β β β β β β β β β β β β Clock( F 7 ) = ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ with arithmetic modulo 7. e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 .
Clocks over finite fields Larger example: Clock( F 1000003 ). Examples of addition β β β β β β β on Clock( F 1000003 ): β β β β β β β β β 2(1000 β 2) = (4000 β 7). β β β β β β β β 4(1000 β 2) = (56000 β 97). β β β β β β β β β 8(1000 β 2) = (863970 β 18817). β β β β β β β β 16(1000 β 2) = (549438 β 156853). β β β β β β β β β β β β β β β β Clock( F 7 ) = ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ with arithmetic modulo 7. e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 .
Clocks over finite fields Larger example: Clock( F 1000003 ). Examples of addition β β β β β β β on Clock( F 1000003 ): β β β β β β β β β 2(1000 β 2) = (4000 β 7). β β β β β β β β 4(1000 β 2) = (56000 β 97). β β β β β β β β β 8(1000 β 2) = (863970 β 18817). β β β β β β β β 16(1000 β 2) = (549438 β 156853). β β β β β β β β β 17(1000 β 2) = (951405 β 877356). β β β β β β β Clock( F 7 ) = ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 β β . Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ with arithmetic modulo 7. e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 .
Clocks over finite fields Larger example: Clock( F 1000003 ). Examples of addition β β β β β β β on Clock( F 1000003 ): β β β β β β β β β 2(1000 β 2) = (4000 β 7). β β β β β β β β 4(1000 β 2) = (56000 β 97). β β β β β β β β β 8(1000 β 2) = (863970 β 18817). β β β β β β β β 16(1000 β 2) = (549438 β 156853). β β β β β β β β β 17(1000 β 2) = (951405 β 877356). β β β β β β β βScalar multiplicationβ Clock( F 7 ) = ( β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 on a clock: β β . Given integer β₯ β 0 Here F 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ and clock point ( β β β‘ ), = β’ 0 β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ compute β₯ ( β β β‘ ). with arithmetic modulo 7. e.g. 2 β 5 = 3 and 3 β 2 = 5 in F 7 .
over finite fields Larger example: Clock( F 1000003 ). βBinary If β₯ is even, β₯ β β β‘ Examples of addition β β β β β β β by doubling β₯β β β β‘ on Clock( F 1000003 ): β β β β β β β β β Otherwise β₯ β β β‘ 2(1000 β 2) = (4000 β 7). β β β β β β β β by adding β β β‘ β₯ οΏ½ β β β‘ 4(1000 β 2) = (56000 β 97). β β β β β β β β β This is very 8(1000 β 2) = (863970 β 18817). β β β β β β β β 16(1000 β 2) = (549438 β 156853). β β β β β β β β β 17(1000 β 2) = (951405 β 877356). β β β β β β β βScalar multiplicationβ F 7 ) = β β β‘ ) β· F 7 β F 7 : β 2 + β‘ 2 = 1 on a clock: β β . Given integer β₯ β 0 7 = β’ 0 β 1 β 2 β 3 β 4 β 5 β 6 β£ and clock point ( β β β‘ ), β’ β 1 β 2 β 3 β οΏ½ 3 β οΏ½ 2 β οΏ½ 1 β£ compute β₯ ( β β β‘ ). rithmetic modulo 7. β 5 = 3 and 3 β 2 = 5 in F 7 .
ite fields Larger example: Clock( F 1000003 ). βBinary methodβ: If β₯ is even, compute β₯ β β β‘ Examples of addition β β β β β β β by doubling ( β₯β 2)( β β β‘ on Clock( F 1000003 ): β β β β β β β β β Otherwise compute β₯ β β β‘ 2(1000 β 2) = (4000 β 7). β β β β β β β β by adding ( β β β‘ ) to β₯ οΏ½ β β β‘ 4(1000 β 2) = (56000 β 97). β β β β β β β β β This is very fast. 8(1000 β 2) = (863970 β 18817). β β β β β β β β 16(1000 β 2) = (549438 β 156853). β β β β β β β β β 17(1000 β 2) = (951405 β 877356). β β β β β β β βScalar multiplicationβ 7 : β 2 + β‘ 2 = 1 on a clock: β β β β β‘ β· β . Given integer β₯ β 0 β’ β β 2 β 3 β 4 β 5 β 6 β£ and clock point ( β β β‘ ), β’ β β β β οΏ½ β οΏ½ 2 β οΏ½ 1 β£ compute β₯ ( β β β‘ ). modulo 7. β and 3 β 2 = 5 in F 7 .
Larger example: Clock( F 1000003 ). βBinary methodβ: If β₯ is even, compute β₯ ( β β β‘ Examples of addition β β β β β β β by doubling ( β₯β 2)( β β β‘ ). on Clock( F 1000003 ): β β β β β β β β β Otherwise compute β₯ ( β β β‘ ) 2(1000 β 2) = (4000 β 7). β β β β β β β β by adding ( β β β‘ ) to ( β₯ οΏ½ 1)( β β β‘ 4(1000 β 2) = (56000 β 97). β β β β β β β β β This is very fast. 8(1000 β 2) = (863970 β 18817). β β β β β β β β 16(1000 β 2) = (549438 β 156853). β β β β β β β β β 17(1000 β 2) = (951405 β 877356). β β β β β β β βScalar multiplicationβ β‘ 2 = 1 on a clock: β β β β β‘ β· β β . Given integer β₯ β 0 β’ β β β β β β 6 β£ and clock point ( β β β‘ ), β’ β β β β οΏ½ β οΏ½ β οΏ½ β£ compute β₯ ( β β β‘ ). β β in F 7 .
Larger example: Clock( F 1000003 ). βBinary methodβ: If β₯ is even, compute β₯ ( β β β‘ ) Examples of addition by doubling ( β₯β 2)( β β β‘ ). on Clock( F 1000003 ): Otherwise compute β₯ ( β β β‘ ) 2(1000 β 2) = (4000 β 7). by adding ( β β β‘ ) to ( β₯ οΏ½ 1)( β β β‘ ). 4(1000 β 2) = (56000 β 97). This is very fast. 8(1000 β 2) = (863970 β 18817). 16(1000 β 2) = (549438 β 156853). 17(1000 β 2) = (951405 β 877356). βScalar multiplicationβ on a clock: Given integer β₯ β 0 and clock point ( β β β‘ ), compute β₯ ( β β β‘ ).
Larger example: Clock( F 1000003 ). βBinary methodβ: If β₯ is even, compute β₯ ( β β β‘ ) Examples of addition by doubling ( β₯β 2)( β β β‘ ). on Clock( F 1000003 ): Otherwise compute β₯ ( β β β‘ ) 2(1000 β 2) = (4000 β 7). by adding ( β β β‘ ) to ( β₯ οΏ½ 1)( β β β‘ ). 4(1000 β 2) = (56000 β 97). This is very fast. 8(1000 β 2) = (863970 β 18817). 16(1000 β 2) = (549438 β 156853). But figuring out β₯ 17(1000 β 2) = (951405 β 877356). given ( β β β‘ ) and β₯ ( β β β‘ ) is much more difficult. βScalar multiplicationβ on a clock: With 30 clock additions Given integer β₯ β 0 we computed and clock point ( β β β‘ ), β₯ (1000 β 2) = (947472 β 736284) compute β₯ ( β β β‘ ). for some 6-digit β₯ . Can you figure out β₯ ?
example: Clock( F 1000003 ). βBinary methodβ: Clock cryptography If β₯ is even, compute β₯ ( β β β‘ ) Examples of addition Standardize β£ by doubling ( β₯β 2)( β β β‘ ). ck( F 1000003 ): and some β β β‘ β· β£ Otherwise compute β₯ ( β β β‘ ) β 2) = (4000 β 7). Alice cho β by adding ( β β β‘ ) to ( β₯ οΏ½ 1)( β β β‘ ). β 2) = (56000 β 97). Computes β β β β‘ This is very fast. β 2) = (863970 β 18817). Bob cho β 16(1000 β 2) = (549438 β 156853). But figuring out β₯ Computes β β β β‘ 17(1000 β 2) = (951405 β 877356). given ( β β β‘ ) and β₯ ( β β β‘ ) is much more difficult. Alice computes β β β β β‘ r multiplicationβ Bob computes β β β β β‘ clock: With 30 clock additions They use integer β₯ β 0 we computed to encrypt clock point ( β β β‘ ), β₯ (1000 β 2) = (947472 β 736284) compute β₯ ( β β β‘ ). for some 6-digit β₯ . Warning Can you figure out β₯ ? Many choices β£
Clock( F 1000003 ). βBinary methodβ: Clock cryptography If β₯ is even, compute β₯ ( β β β‘ ) addition Standardize a large β£ by doubling ( β₯β 2)( β β β‘ ). 1000003 ): and some ( β β β‘ ) β· β£ Otherwise compute β₯ ( β β β‘ ) β (4000 β 7). Alice chooses big secret β by adding ( β β β‘ ) to ( β₯ οΏ½ 1)( β β β‘ ). β (56000 β 97). Computes her public β β β β‘ This is very fast. β (863970 β 18817). Bob chooses big secret β β (549438 β 156853). But figuring out β₯ Computes his public β β β β‘ β (951405 β 877356). given ( β β β‘ ) and β₯ ( β β β‘ ) is much more difficult. Alice computes β ( β β β β‘ multiplicationβ Bob computes β ( β β β β‘ With 30 clock additions They use this shared β₯ β 0 we computed to encrypt with AES-GCM ( β β β‘ ), β₯ (1000 β 2) = (947472 β 736284) β₯ β β β‘ ). for some 6-digit β₯ . Warning #1: Can you figure out β₯ ? Many choices of β£
1000003 ). βBinary methodβ: Clock cryptography If β₯ is even, compute β₯ ( β β β‘ ) Standardize a large prime β£ by doubling ( β₯β 2)( β β β‘ ). and some ( β β β‘ ) β· Clock( F β£ ). Otherwise compute β₯ ( β β β‘ ) β β Alice chooses big secret β . by adding ( β β β‘ ) to ( β₯ οΏ½ 1)( β β β‘ ). β β Computes her public key β ( β β β‘ This is very fast. β β 18817). Bob chooses big secret β . β β 156853). But figuring out β₯ Computes his public key β ( β β β‘ β β 877356). given ( β β β‘ ) and β₯ ( β β β‘ ) is much more difficult. Alice computes β ( β ( β β β‘ )). Bob computes β ( β ( β β β‘ )). With 30 clock additions They use this shared secret β₯ β we computed to encrypt with AES-GCM etc. β₯ (1000 β 2) = (947472 β 736284) β β β‘ β₯ β β β‘ for some 6-digit β₯ . Warning #1: Can you figure out β₯ ? Many choices of β£ are bad!
βBinary methodβ: Clock cryptography If β₯ is even, compute β₯ ( β β β‘ ) Standardize a large prime β£ by doubling ( β₯β 2)( β β β‘ ). and some ( β β β‘ ) β· Clock( F β£ ). Otherwise compute β₯ ( β β β‘ ) Alice chooses big secret β . by adding ( β β β‘ ) to ( β₯ οΏ½ 1)( β β β‘ ). Computes her public key β ( β β β‘ ). This is very fast. Bob chooses big secret β . But figuring out β₯ Computes his public key β ( β β β‘ ). given ( β β β‘ ) and β₯ ( β β β‘ ) is much more difficult. Alice computes β ( β ( β β β‘ )). Bob computes β ( β ( β β β‘ )). With 30 clock additions They use this shared secret we computed to encrypt with AES-GCM etc. β₯ (1000 β 2) = (947472 β 736284) for some 6-digit β₯ . Warning #1: Can you figure out β₯ ? Many choices of β£ are bad!
οΏ½ οΏ½ ry methodβ: Clock cryptography Aliceβs secret β β β₯ even, compute β₯ ( β β β‘ ) Standardize a large prime β£ bling ( β₯β 2)( β β β‘ ). and some ( β β β‘ ) β· Clock( F β£ ). Aliceβs Otherwise compute β₯ ( β β β‘ ) public Alice chooses big secret β . ding ( β β β‘ ) to ( β₯ οΏ½ 1)( β β β‘ ). β ( β β β‘ β β β β‘ Computes her public key β ( β β β‘ ). very fast. Bob chooses big secret β . β’ Alice β Bob β£ β’ β β£ figuring out β₯ shared Computes his public key β ( β β β‘ ). ( β β β‘ ) and β₯ ( β β β‘ ) ββ ( β β β‘ ββ β β β‘ much more difficult. Alice computes β ( β ( β β β‘ )). Bob computes β ( β ( β β β‘ )). 30 clock additions They use this shared secret computed to encrypt with AES-GCM etc. β₯ (1000 β 2) = (947472 β 736284) ome 6-digit β₯ . Warning #1: ou figure out β₯ ? Many choices of β£ are bad!
οΏ½ οΏ½ dβ: Clock cryptography Aliceβs secret key β β β₯ compute β₯ ( β β β‘ ) Standardize a large prime β£ β₯β 2)( β β β‘ ). and some ( β β β‘ ) β· Clock( F β£ ). Aliceβs mpute β₯ ( β β β‘ ) public key Alice chooses big secret β . β β β‘ to ( β₯ οΏ½ 1)( β β β‘ ). β ( β β β‘ ) β β β β‘ β² β² Computes her public key β ( β β β‘ ). β² fast. β² β² οΏ½ rrrr β² Bob chooses big secret β . β’ Alice β Bob β£ βs β’ β β£ β₯ = shared secret Computes his public key β ( β β β‘ ). β β β‘ β₯ ( β β β‘ ) ββ ( β β β‘ ) ββ β β β‘ difficult. Alice computes β ( β ( β β β‘ )). Bob computes β ( β ( β β β‘ )). additions They use this shared secret to encrypt with AES-GCM etc. (947472 β 736284) β₯ β β₯ . Warning #1: out β₯ ? Many choices of β£ are bad!
οΏ½ οΏ½ οΏ½ οΏ½ Clock cryptography Aliceβs Bobβs secret key β secret k β β₯ β₯ β β β‘ ) Standardize a large prime β£ β₯β β β β‘ and some ( β β β‘ ) β· Clock( F β£ ). Aliceβs Bobβs β₯ β β β‘ ) public key public Alice chooses big secret β . β β β‘ β₯ οΏ½ 1)( β β β‘ ). β ( β β β‘ ) β ( β β β‘ β² β² οΏ½ rrrrrrr Computes her public key β ( β β β‘ ). β² β² β² β² β² Bob chooses big secret β . β’ Alice β Bob β£ βs β’ Bob β Alice β£ β₯ = shared secret shared s Computes his public key β ( β β β‘ ). β β β‘ β₯ β β β‘ ββ ( β β β‘ ) ββ ( β β β‘ Alice computes β ( β ( β β β‘ )). Bob computes β ( β ( β β β‘ )). They use this shared secret to encrypt with AES-GCM etc. β 736284) β₯ β β₯ Warning #1: β₯ Many choices of β£ are bad!
οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ Clock cryptography Aliceβs Bobβs secret key β secret key β Standardize a large prime β£ and some ( β β β‘ ) β· Clock( F β£ ). Aliceβs Bobβs public key public key Alice chooses big secret β . β ( β β β‘ ) β ( β β β‘ ) β² β² οΏ½ rrrrrrr Computes her public key β ( β β β‘ ). β² β² β² β² β² Bob chooses big secret β . β’ Alice β Bob β£ βs β’ Bob β Alice β£ βs = shared secret shared secret Computes his public key β ( β β β‘ ). ββ ( β β β‘ ) ββ ( β β β‘ ) Alice computes β ( β ( β β β‘ )). Bob computes β ( β ( β β β‘ )). They use this shared secret to encrypt with AES-GCM etc. Warning #1: Many choices of β£ are bad!
οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ Clock cryptography Aliceβs Bobβs secret key β secret key β Standardize a large prime β£ and some ( β β β‘ ) β· Clock( F β£ ). Aliceβs Bobβs public key public key Alice chooses big secret β . β ( β β β‘ ) β ( β β β‘ ) β² β² οΏ½ rrrrrrr Computes her public key β ( β β β‘ ). β² β² β² β² β² Bob chooses big secret β . β’ Alice β Bob β£ βs β’ Bob β Alice β£ βs = shared secret shared secret Computes his public key β ( β β β‘ ). ββ ( β β β‘ ) ββ ( β β β‘ ) Alice computes β ( β ( β β β‘ )). Warning #2: Bob computes β ( β ( β β β‘ )). Clocks arenβt elliptic! They use this shared secret Can use index calculus to encrypt with AES-GCM etc. to attack clock cryptography. Warning #1: To match RSA-3072 security Many choices of β£ are bad! need β£ β 2 1536 .
οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ cryptography Timing attacks Aliceβs Bobβs secret key β secret key β Standardize a large prime β£ Attacker some ( β β β‘ ) β· Clock( F β£ ). β ( β β β‘ ) and β β β β‘ Aliceβs Bobβs public key public key chooses big secret β . Attacker β ( β β β‘ ) β ( β β β‘ ) β² β² οΏ½ rrrrrrr Computes her public key β ( β β β‘ ). Alice to β β β β β‘ β² β² β² β² β² Often attack chooses big secret β . β’ Alice β Bob β£ βs β’ Bob β Alice β£ βs time for = shared secret shared secret Computes his public key β ( β β β‘ ). performed ββ ( β β β‘ ) ββ ( β β β‘ ) computes β ( β ( β β β‘ )). not just Warning #2: computes β ( β ( β β β‘ )). This reveals β Clocks arenβt elliptic! use this shared secret Fix: constant-time Can use index calculus encrypt with AES-GCM etc. to attack clock cryptography. performing rning #1: no matter To match RSA-3072 security choices of β£ are bad! need β£ β 2 1536 .
οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ cryptography Timing attacks Aliceβs Bobβs secret key β secret key β rge prime β£ Attacker sees more β β β‘ β· Clock( F β£ ). β ( β β β‘ ) and β ( β β β‘ ). Aliceβs Bobβs public key public key big secret β . Attacker sees time β ( β β β‘ ) β ( β β β‘ ) β² β² οΏ½ rrrrrrr public key β ( β β β‘ ). Alice to compute β β β β β‘ β² β² β² β² β² Often attacker can secret β . β’ Alice β Bob β£ βs β’ Bob β Alice β£ βs time for each operation = shared secret shared secret public key β ( β β β‘ ). performed by Alice, ββ ( β β β‘ ) ββ ( β β β‘ ) β ( β ( β β β‘ )). not just total time. Warning #2: β ( β ( β β β‘ )). This reveals secret β Clocks arenβt elliptic! shared secret Fix: constant-time Can use index calculus AES-GCM etc. to attack clock cryptography. performing same op no matter what scala To match RSA-3072 security β£ are bad! need β£ β 2 1536 .
οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ Timing attacks Aliceβs Bobβs secret key β secret key β β£ Attacker sees more than β β β‘ β· β£ ). β ( β β β‘ ) and β ( β β β‘ ). Aliceβs Bobβs public key public key β . Attacker sees time for β ( β β β‘ ) β ( β β β‘ ) β² β² οΏ½ rrrrrrr β ( β β β‘ ). Alice to compute β ( β ( β β β‘ )). β² β² β² β² β² Often attacker can see β β’ Alice β Bob β£ βs β’ Bob β Alice β£ βs time for each operation = shared secret shared secret β ( β β β‘ ). performed by Alice, ββ ( β β β‘ ) ββ ( β β β‘ ) β β β β β‘ )). not just total time. Warning #2: β β β β β‘ This reveals secret β . Clocks arenβt elliptic! cret Fix: constant-time code, Can use index calculus etc. to attack clock cryptography. performing same operations no matter what scalar is. To match RSA-3072 security ad! β£ need β£ β 2 1536 .
οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ Timing attacks Aliceβs Bobβs secret key β secret key β Attacker sees more than β ( β β β‘ ) and β ( β β β‘ ). Aliceβs Bobβs public key public key Attacker sees time for β ( β β β‘ ) β ( β β β‘ ) β² β² οΏ½ rrrrrrr Alice to compute β ( β ( β β β‘ )). β² β² β² β² β² Often attacker can see β’ Alice β Bob β£ βs β’ Bob β Alice β£ βs time for each operation = shared secret shared secret performed by Alice, ββ ( β β β‘ ) ββ ( β β β‘ ) not just total time. Warning #2: This reveals secret β . Clocks arenβt elliptic! Fix: constant-time code, Can use index calculus to attack clock cryptography. performing same operations no matter what scalar is. To match RSA-3072 security need β£ β 2 1536 .
οΏ½ οΏ½ οΏ½ οΏ½ Timing attacks Addition Aliceβs Bobβs secret key β secret key β Attacker sees more than β‘ β ( β β β‘ ) and β ( β β β‘ ). Aliceβs Bobβs β β public key public key Attacker sees time for P β β β‘ β β β β‘ ) β ( β β β‘ ) β² β² οΏ½ rrrrrrr β Alice to compute β ( β ( β β β‘ )). β² β² β² P β β β‘ β² β β² Often attacker can see β β β’ Alice β Bob β£ βs β’ Bob β Alice β£ βs P β β β‘ time for each operation = red secret shared secret performed by Alice, ββ ( β β β‘ ) ββ ( β β β‘ ) not just total time. β 2 + β‘ 2 οΏ½ β β‘ rning #2: This reveals secret β . Sum of ( β β β‘ β β β‘ arenβt elliptic! (( β 1 β‘ 2 + β‘ β β οΏ½ β β β‘ β‘ Fix: constant-time code, use index calculus ( β‘ 1 β‘ 2 οΏ½ β β β β β β‘ β‘ attack clock cryptography. performing same operations no matter what scalar is. match RSA-3072 security β£ β 2 1536 .
οΏ½ οΏ½ οΏ½ οΏ½ Timing attacks Addition on an elliptic Bobβs β secret key β Attacker sees more than β‘ β ( β β β‘ ) and β ( β β β‘ ). Bobβs neutral β β public key Attacker sees time for P β β β‘ β ( β β β‘ ) β β β β‘ rrrr β Alice to compute β ( β ( β β β‘ )). β β² P β β β‘ β² β β β² β β’ β’ Often attacker can see β’ β β’ β¬ β β¬ β¬ β¬ β β’ β β£ β’ Bob β Alice β£ βs P β β β‘ time for each operation = shared secret performed by Alice, ββ β β β‘ ββ ( β β β‘ ) not just total time. β 2 + β‘ 2 = 1 οΏ½ 30 β β‘ This reveals secret β . Sum of ( β 1 β β‘ 1 ) and β β β‘ elliptic! (( β 1 β‘ 2 + β‘ 1 β 2 ) β (1 οΏ½ β β β‘ β‘ Fix: constant-time code, calculus ( β‘ 1 β‘ 2 οΏ½ β 1 β 2 ) β (1+30 β β β‘ β‘ cryptography. performing same operations no matter what scalar is. RSA-3072 security β£ β
οΏ½ οΏ½ οΏ½ οΏ½ Timing attacks Addition on an elliptic curve Bobβs β secret key β Attacker sees more than β‘ β ( β β β‘ ) and β ( β β β‘ ). Bobβs neutral = (0 β β public key Attacker sees time for P 1 = ( β 1 β β‘ β β β β‘ ) β β β β‘ β Alice to compute β ( β ( β β β‘ )). β P 2 = ( β β β‘ β β β’ β β’ β’ Often attacker can see β’ β β’ β¬ β β¬ β¬ β¬ β¬ β β¬ β’ β β£ β’ β Alice β£ βs P 3 = ( β β β‘ time for each operation secret performed by Alice, ββ β β β‘ ββ β β β‘ ) not just total time. β 2 + β‘ 2 = 1 οΏ½ 30 β 2 β‘ 2 . This reveals secret β . Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) (( β 1 β‘ 2 + β‘ 1 β 2 ) β (1 οΏ½ 30 β 1 β 2 β‘ 1 β‘ Fix: constant-time code, ( β‘ 1 β‘ 2 οΏ½ β 1 β 2 ) β (1+30 β 1 β 2 β‘ 1 β‘ cryptography. performing same operations no matter what scalar is. security β£ β
οΏ½ οΏ½ Timing attacks Addition on an elliptic curve Attacker sees more than β‘ β ( β β β‘ ) and β ( β β β‘ ). neutral = (0 β 1) β Attacker sees time for P 1 = ( β 1 β β‘ 1 ) β Alice to compute β ( β ( β β β‘ )). β P 2 = ( β 2 β β‘ 2 ) β β β’ β β’ β’ Often attacker can see β’ β β¬ β β’ β¬ β¬ β¬ β¬ β β¬ P 3 = ( β 3 β β‘ 3 ) time for each operation performed by Alice, not just total time. β 2 + β‘ 2 = 1 οΏ½ 30 β 2 β‘ 2 . This reveals secret β . Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is (( β 1 β‘ 2 + β‘ 1 β 2 ) β (1 οΏ½ 30 β 1 β 2 β‘ 1 β‘ 2 ), Fix: constant-time code, ( β‘ 1 β‘ 2 οΏ½ β 1 β 2 ) β (1+30 β 1 β 2 β‘ 1 β‘ 2 )). performing same operations no matter what scalar is.
οΏ½ οΏ½ Timing attacks Addition on an elliptic curve The clock er sees more than β‘ β‘ β β β β‘ ) and β ( β β β‘ ). neutral = (0 β 1) β β β er sees time for P β β β‘ β P 1 = ( β 1 β β‘ 1 ) β to compute β ( β ( β β β‘ )). P β β β‘ β β P 2 = ( β 2 β β‘ 2 ) β β β’ β β’ β’ attacker can see β’ β β β¬ β’ β β¬ β¬ β¬ β¬ β β¬ P 3 = ( β 3 β β‘ 3 ) for each operation β P β β β‘ rmed by Alice, just total time. β 2 + β‘ 2 = 1 οΏ½ 30 β 2 β‘ 2 . β 2 + β‘ 2 reveals secret β . Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is Sum of ( β β β‘ β β β‘ (( β 1 β‘ 2 + β‘ 1 β 2 ) β (1 οΏ½ 30 β 1 β 2 β‘ 1 β‘ 2 ), ( β 1 β‘ 2 + β‘ β constant-time code, ( β‘ 1 β‘ 2 οΏ½ β 1 β 2 ) β (1+30 β 1 β 2 β‘ 1 β‘ 2 )). β‘ 1 β‘ 2 οΏ½ β β rming same operations matter what scalar is.
οΏ½ οΏ½ οΏ½ Addition on an elliptic curve The clock again, fo more than β‘ β‘ β β β β‘ β β β β‘ ). neutral = (0 β 1) neutral β β β time for P β β β‘ β P 1 = ( β 1 β β‘ 1 ) β β compute β ( β ( β β β‘ )). β P β β β‘ β β β P 2 = ( β 2 β β‘ 2 ) β β β β β’ β β β β’ β β’ can see β β’ β β β¬ β β’ β β P β¬ β¬ β¬ P β¬ β β¬ P P P 3 = ( β 3 β β‘ 3 ) P eration β P β β β‘ Alice, time. β 2 + β‘ 2 = 1 οΏ½ 30 β 2 β‘ 2 . β 2 + β‘ 2 = 1. secret β . Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is Sum of ( β 1 β β‘ 1 ) and β β β‘ (( β 1 β‘ 2 + β‘ 1 β 2 ) β (1 οΏ½ 30 β 1 β 2 β‘ 1 β‘ 2 ), ( β 1 β‘ 2 + β‘ 1 β 2 , constant-time code, ( β‘ 1 β‘ 2 οΏ½ β 1 β 2 ) β (1+30 β 1 β 2 β‘ 1 β‘ 2 )). β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). operations scalar is.
οΏ½ οΏ½ οΏ½ οΏ½ Addition on an elliptic curve The clock again, for comparison: β‘ β‘ β β β β‘ β β β β‘ neutral = (0 β 1) neutral = (0 β β β P 1 = ( β β β‘ β P 1 = ( β 1 β β‘ 1 ) β β β β β β β β‘ )). β P 2 = β β β‘ β β β P 2 = ( β 2 β β‘ 2 ) β β β β β β β’ β β β β’ β β’ β β’ β β β’ β β¬ β P β β¬ β¬ β¬ P β¬ β β¬ P P P 3 = ( β 3 β β‘ 3 ) P P P β P 3 = ( β β β‘ β 2 + β‘ 2 = 1 οΏ½ 30 β 2 β‘ 2 . β 2 + β‘ 2 = 1. β Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) (( β 1 β‘ 2 + β‘ 1 β 2 ) β (1 οΏ½ 30 β 1 β 2 β‘ 1 β‘ 2 ), ( β 1 β‘ 2 + β‘ 1 β 2 , ( β‘ 1 β‘ 2 οΏ½ β 1 β 2 ) β (1+30 β 1 β 2 β‘ 1 β‘ 2 )). β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). erations
οΏ½ οΏ½ οΏ½ οΏ½ Addition on an elliptic curve The clock again, for comparison: β‘ β‘ neutral = (0 β 1) neutral = (0 β 1) β β P 1 = ( β 1 β β‘ 1 ) β P 1 = ( β 1 β β‘ 1 ) β β β β P 2 = ( β 2 β β‘ 2 ) β β β P 2 = ( β 2 β β‘ 2 ) β β β β β β β’ β β β β’ β β’ β β’ β β β β¬ β’ β β P β¬ β¬ β¬ P β¬ β β¬ P P P 3 = ( β 3 β β‘ 3 ) P P P β P 3 = ( β 3 β β‘ 3 ) β 2 + β‘ 2 = 1 οΏ½ 30 β 2 β‘ 2 . β 2 + β‘ 2 = 1. Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is (( β 1 β‘ 2 + β‘ 1 β 2 ) β (1 οΏ½ 30 β 1 β 2 β‘ 1 β‘ 2 ), ( β 1 β‘ 2 + β‘ 1 β 2 , ( β‘ 1 β‘ 2 οΏ½ β 1 β 2 ) β (1+30 β 1 β 2 β‘ 1 β‘ 2 )). β‘ 1 β‘ 2 οΏ½ β 1 β 2 ).
οΏ½ οΏ½ οΏ½ οΏ½ Addition on an elliptic curve The clock again, for comparison: More elliptic Choose an β£ β‘ β‘ Choose a β β· β£ neutral = (0 β 1) neutral = (0 β 1) β β β’ ( β β β‘ ) β· β£ β P 1 = ( β 1 β β‘ 1 ) β£ β P 1 = ( β 1 β β‘ 1 ) β β 2 + β‘ β β ββ β‘ β£ β P 2 = ( β 2 β β‘ 2 ) β β β P 2 = ( β 2 β β‘ 2 ) β β β β β β β’ β β β β’ β β’ is a βcomplete β β’ β β β β¬ β’ P β β β¬ β¬ β¬ P β¬ β β¬ P P P 3 = ( β 3 β β‘ 3 ) P P P β P 3 = ( β 3 β β‘ 3 ) βThe Edw ( β 1 β β‘ 1 ) + β β β‘ β β β‘ β‘ 2 = 1 οΏ½ 30 β 2 β‘ 2 . β 2 + β‘ 2 = 1. β where of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is β β‘ β‘ β β 3 = β β‘ + β‘ 1 β 2 ) β (1 οΏ½ 30 β 1 β 2 β‘ 1 β‘ 2 ), ( β 1 β‘ 2 + β‘ 1 β 2 , 1 + ββ β β‘ β‘ β‘ β‘ οΏ½ β 1 β 2 ) β (1+30 β 1 β 2 β‘ 1 β‘ 2 )). β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). β‘ 1 β‘ οΏ½ β β β‘ 3 = 1 οΏ½ ββ β β‘ β‘
οΏ½ οΏ½ οΏ½ elliptic curve The clock again, for comparison: More elliptic curves Choose an odd prime β£ β‘ β‘ Choose a non-squa β β· β£ neutral = (0 β 1) neutral = (0 β 1) β β β’ ( β β β‘ ) β· F β£ β F β£ P 1 = ( β 1 β β‘ 1 ) β P 1 = ( β 1 β β‘ 1 ) β β 2 + β‘ 2 = 1 + ββ β‘ β£ β β β P 2 = ( β 2 β β‘ 2 ) β β P 2 = ( β 2 β β‘ 2 ) β β β β β β’ β β β’ β is a βcomplete Edw β β β β P β β¬ P β¬ β β¬ P P P 3 = ( β 3 β β‘ 3 ) P P P β P 3 = ( β 3 β β‘ 3 ) βThe Edwards addition ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) β β β‘ β 2 + β‘ 2 = 1. οΏ½ 30 β 2 β‘ 2 . β β‘ where β β β‘ and ( β 2 β β‘ 2 ) is Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is β 1 β‘ 2 + β‘ 1 β β 3 = β β‘ β‘ β β (1 οΏ½ 30 β 1 β 2 β‘ 1 β‘ 2 ), ( β 1 β‘ 2 + β‘ 1 β 2 , 1 + ββ 1 β 2 β‘ 1 β‘ β‘ β‘ οΏ½ β β β (1+30 β 1 β 2 β‘ 1 β‘ 2 )). β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). β‘ 1 β‘ 2 οΏ½ β 1 β β‘ 3 = 1 οΏ½ ββ 1 β 2 β‘ 1 β‘
οΏ½ οΏ½ curve The clock again, for comparison: More elliptic curves Choose an odd prime β£ . β‘ β‘ Choose a non-square β β· F β£ (0 β 1) neutral = (0 β 1) β β β’ ( β β β‘ ) β· F β£ β F β£ : P 1 = ( β 1 β β‘ 1 ) β P β β β‘ 1 ) β β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ β β β P 2 = ( β 2 β β‘ 2 ) β β P ( β 2 β β‘ 2 ) β β β β β β β β is a βcomplete Edwards curveβ. β β β P β β P β P P P ( β 3 β β‘ 3 ) P P P β P 3 = ( β 3 β β‘ 3 ) βThe Edwards addition lawβ: ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 β 2 + β‘ 2 = 1. β β‘ οΏ½ β β‘ where β β β‘ β β β‘ 2 ) is Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is β 1 β‘ 2 + β‘ 1 β 2 β 3 = , β β‘ β‘ β β οΏ½ β β β‘ 1 β‘ 2 ), ( β 1 β‘ 2 + β‘ 1 β 2 , 1 + ββ 1 β 2 β‘ 1 β‘ 2 β‘ β‘ οΏ½ β β β β β β‘ 1 β‘ 2 )). β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). β‘ 1 β‘ 2 οΏ½ β 1 β 2 β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2
οΏ½ οΏ½ The clock again, for comparison: More elliptic curves Choose an odd prime β£ . β‘ Choose a non-square β β· F β£ . neutral = (0 β 1) β β’ ( β β β‘ ) β· F β£ β F β£ : P 1 = ( β 1 β β‘ 1 ) β β β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ β β P 2 = ( β 2 β β‘ 2 ) β β β β β β β β β is a βcomplete Edwards curveβ. β β β β P P P P P P P β P 3 = ( β 3 β β‘ 3 ) βThe Edwards addition lawβ: ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 ) β 2 + β‘ 2 = 1. where Sum of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is β 1 β‘ 2 + β‘ 1 β 2 β 3 = , ( β 1 β‘ 2 + β‘ 1 β 2 , 1 + ββ 1 β 2 β‘ 1 β‘ 2 β‘ 1 β‘ 2 οΏ½ β 1 β 2 ). β‘ 1 β‘ 2 οΏ½ β 1 β 2 β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2
οΏ½ οΏ½ clock again, for comparison: More elliptic curves βHey, there in the Edw Choose an odd prime β£ . β‘ What if Choose a non-square β β· F β£ . neutral = (0 β 1) β β’ ( β β β‘ ) β· F β£ β F β£ : P 1 = ( β 1 β β‘ 1 ) β β β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ β β P 2 = ( β 2 β β‘ 2 ) β β β β β β β β β is a βcomplete Edwards curveβ. β β P β β P P P P P P β P 3 = ( β 3 β β‘ 3 ) βThe Edwards addition lawβ: ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 ) β‘ 2 = 1. β where of ( β 1 β β‘ 1 ) and ( β 2 β β‘ 2 ) is β 1 β‘ 2 + β‘ 1 β 2 β 3 = , β β‘ + β‘ 1 β 2 , 1 + ββ 1 β 2 β‘ 1 β‘ 2 β‘ β‘ οΏ½ β 1 β 2 ). β‘ 1 β‘ 2 οΏ½ β 1 β 2 β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2
οΏ½ again, for comparison: More elliptic curves βHey, there are divisions in the Edwards addition Choose an odd prime β£ . β‘ What if the denominato Choose a non-square β β· F β£ . neutral = (0 β 1) β β’ ( β β β‘ ) β· F β£ β F β£ : P 1 = ( β 1 β β‘ 1 ) β β β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ β P 2 = ( β 2 β β‘ 2 ) β β β β β is a βcomplete Edwards curveβ. β P P P β P 3 = ( β 3 β β‘ 3 ) βThe Edwards addition lawβ: ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 ) β β‘ where β β β‘ and ( β 2 β β‘ 2 ) is β 1 β‘ 2 + β‘ 1 β 2 β 3 = , β β‘ β‘ β 1 + ββ 1 β 2 β‘ 1 β‘ 2 β‘ β‘ οΏ½ β β β‘ 1 β‘ 2 οΏ½ β 1 β 2 β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2
comparison: More elliptic curves βHey, there are divisions in the Edwards addition law! Choose an odd prime β£ . β‘ What if the denominators are Choose a non-square β β· F β£ . (0 β 1) β β’ ( β β β‘ ) β· F β£ β F β£ : ( β 1 β β‘ 1 ) P β β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ P = ( β 2 β β‘ 2 ) β is a βcomplete Edwards curveβ. β β P ( β 3 β β‘ 3 ) βThe Edwards addition lawβ: ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 ) β β‘ where β β β‘ β β β‘ 2 ) is β 1 β‘ 2 + β‘ 1 β 2 β 3 = , β β‘ β‘ β 1 + ββ 1 β 2 β‘ 1 β‘ 2 β‘ β‘ οΏ½ β β β‘ 1 β‘ 2 οΏ½ β 1 β 2 β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2
More elliptic curves βHey, there are divisions in the Edwards addition law! Choose an odd prime β£ . What if the denominators are 0?β Choose a non-square β β· F β£ . β’ ( β β β‘ ) β· F β£ β F β£ : β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ is a βcomplete Edwards curveβ. βThe Edwards addition lawβ: ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 ) where β 1 β‘ 2 + β‘ 1 β 2 β 3 = , 1 + ββ 1 β 2 β‘ 1 β‘ 2 β‘ 1 β‘ 2 οΏ½ β 1 β 2 β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2
More elliptic curves βHey, there are divisions in the Edwards addition law! Choose an odd prime β£ . What if the denominators are 0?β Choose a non-square β β· F β£ . Answer: Can prove that β’ ( β β β‘ ) β· F β£ β F β£ : the denominators are never 0. β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ Addition law is complete . is a βcomplete Edwards curveβ. βThe Edwards addition lawβ: ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 ) where β 1 β‘ 2 + β‘ 1 β 2 β 3 = , 1 + ββ 1 β 2 β‘ 1 β‘ 2 β‘ 1 β‘ 2 οΏ½ β 1 β 2 β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2
More elliptic curves βHey, there are divisions in the Edwards addition law! Choose an odd prime β£ . What if the denominators are 0?β Choose a non-square β β· F β£ . Answer: Can prove that β’ ( β β β‘ ) β· F β£ β F β£ : the denominators are never 0. β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ Addition law is complete . is a βcomplete Edwards curveβ. This proof relies on βThe Edwards addition lawβ: choosing non-square β . ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 ) where β 1 β‘ 2 + β‘ 1 β 2 β 3 = , 1 + ββ 1 β 2 β‘ 1 β‘ 2 β‘ 1 β‘ 2 οΏ½ β 1 β 2 β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2
More elliptic curves βHey, there are divisions in the Edwards addition law! Choose an odd prime β£ . What if the denominators are 0?β Choose a non-square β β· F β£ . Answer: Can prove that β’ ( β β β‘ ) β· F β£ β F β£ : the denominators are never 0. β 2 + β‘ 2 = 1 + ββ 2 β‘ 2 β£ Addition law is complete . is a βcomplete Edwards curveβ. This proof relies on βThe Edwards addition lawβ: choosing non-square β . ( β 1 β β‘ 1 ) + ( β 2 β β‘ 2 ) = ( β 3 β β‘ 3 ) where If we instead choose square β : β 1 β‘ 2 + β‘ 1 β 2 curve is still elliptic, and β 3 = , 1 + ββ 1 β 2 β‘ 1 β‘ 2 addition seems to work, β‘ 1 β‘ 2 οΏ½ β 1 β 2 but there are failure cases, β‘ 3 = . 1 οΏ½ ββ 1 β 2 β‘ 1 β‘ 2 often exploitable by attackers. Safe code is more complicated.
Recommend
More recommend