rt line simulation study of yso outflow in early stage
play

RT Line Simulation Study of YSO Outflow in Early Stage - towards - PowerPoint PPT Presentation

RT Line Simulation Study of YSO Outflow in Early Stage - towards ALMA era - Masako YAMDA(ASIAA) Masahiro MACHIDA, Shu-ichiro INUTSUKA(Kyoto University) Kohji TOMISAKA(NAOJ) 2008 12 22 Introduction : YSO Outflow


  1. RT Line Simulation Study of YSO Outflow in Early Stage - towards ALMA era - Masako YAMDA(ASIAA) 、 Masahiro MACHIDA, Shu-ichiro INUTSUKA(Kyoto University) 、 Kohji TOMISAKA(NAOJ) 2008 年 12 月 22 日月曜日

  2. Introduction : YSO Outflow Belloche et al.2002 ubiquitous phenomena in star forming region ✦ obs. : wide variations in morphology, velocity... ✦ Studies of YSO outflow : ✦ in star formation processes : angular momentum transfer/ ✦ final mass determination/(possible) triggering mechanism in sequential star formation… physics in outflow : driving mechanism?? ✦ Driving mechanism : several models, but still unclear ✦ B force-driven? ✦ collapse of rotating magnetized molecular core ✦ (Lorentz force / centrifugal force) disk wind, X-wind... ✦ entrainment by high-velocity optical jet? ✦ Difficulty in observational study of driving mechanism : spatial extent /evolution / τ ✦ launching region[<100AU, 10 2 yr] ⇔ current obs.[~10 3 -10 4 AU, 10 3 -10 4 yr] ✦ complex velocity field of several components : infall of envelope/disk ~ rotation of disk ~ outflow ✦ launching mechanism ⇔ early stage of evolution ← deeply embedded in progenitor mol. core ✦ 3D non-LTE radiative transfer approach 2008 年 12 月 22 日月曜日

  3. Calculations ✦ Hydrodynamic simulations: 3D nest grid, resistive MHD ✦ initial condition : rotating Bonnor-Ebert sphere ✦ (M=0.6Mo, R=2000AU, T kin =10K) EOS : taken from 1D radiation hydro. simulation ✦ (Masunaga & Inutsuka, 2000) + some modification long evolution, and large spatial extent ✦ stop calculations slightly after the first core ✦ 2000AU formation ✦ Radiative Transfer: [ray tracing with long characteristics method] non-LTE level population up to J=10 for each grid ✦ assume uniform chemical abundance distribution ✦ abs. coeffs. profile : ✦ purely thermal velocity, no micro-turbulence 12 CO CS SiO n crit ~10 2 [1/cc] ~10 5 [1/cc] ~10 5 [1/cc] E 10 5.5K 2.35K 2.08K Hogerheijde&van der Tak(2000) 2008 年 12 月 22 日月曜日

  4. Calculations (cont.) : hydro. evolution 1D Radiative Hydrodynamics Larson (1969) Protostar Tohline (1982) Masunaga & Inutsuka (2000) Log T (K) Adiabatic Phase Second Collapse & Isothermal Phase Protostellar Phases To MS 10 4 Dead region B amplification B amplification B dissipation (10 12 cm -3 <n<10 15 cm -3 ) adopt slightly harder EOS protostar in order to calculate longer (second core) 10 3 period and larger extent H 2 dissociation B B B (endoergic reaction) Molecular Cloud Core 10 2 Adiabatic core (First core) Formation 10 Gas Temperature Log n (cm -3 ) 10 5 10 10 10 15 10 20 Spatial Scale (AU) 10 4 100 1 0.1 2008 年 12 月 22 日月曜日

  5. Calculations (cont.) ✦ simulations: a spatially/temporary snap shot result is cut-out ✦ from Nested Grid simulation L=7 ⇒ emission/absorption in outer part do not enter our results [current limitation of our RT scheme] AMR/nested grid RT scheme (by Prof. Tomisaka , ✦ experimental) ⇒ outer envelope is not completely thin , and introduces un-negligible changes! My analysis/results are taken as qualitatively, not quantitatively! 2008 年 12 月 22 日月曜日

  6. Non-LTE results : integrated intensity integrated intensity : full & blue/red almost symmetric ✦ distribution of red/blue components θ =0, 30, 60, 90 deg. [SiO(J=7-6) E 7 =58K], barotropic 1000 1000 θ =0 θ =30 in outflow & disk : red and ✦ blue contours show separate 500 500 peaks outflow not in perfect symmetry ✦ 0 0 z z in red/blue contours due to optical thickness & -500 -500 velocity structure effects 2,000AU envelope -1000 -1000 θ =30, 60deg. : almost circular ✦ -1000 -500 0 500 1000 -1000 -500 0 500 1000 envelope at the outer part x x ⇔ infalling motion of envelope toward the center θ =60 θ =90 1000 1000 Δθ (10AU)=0.07” if D=140pc ✦ 500 500 0 0 z z ALMA can resolve these structures -500 -500 (..and SMA as well?) -1000 -1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 x x 2008 年 12 月 22 日月曜日

  7. Column density : dust continuum dust continuum : expect for higher angular resolution obs. compared with lines ✦ � β � 0 . 25[mm] κ ν = 0 . 1 × T b = B ν (1 − exp( − τ ν )) λ 1000 1000 1000 θ =0(pole-on) θ =30 (a) 150GHz (b) 220GHz (c) 350GHz 500 500 500 y[AU] y[AU] y[AU] 0 0 0 -500 -500 -500 -1000 -1000 -1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 θ =60 x[AU] x[AU] x[AU] θ =60 θ =90(edge-on) 6.00e-02 1000 1000 T d =10K~T gas (d) 650GHz (e) 850GHz 5.00e-02 500 500 4.00e-02 ✴ high column density at T b [K] y[AU] y[AU] 0 0 3.00e-02 disk - difficult to look 2.00e-02 further inside -500 -500 1.00e-02 ✴ emission from outflow -1000 -1000 0.00e+00 component is quite weak -1000 -500 0 500 1000 -1000 -500 0 500 1000 x[AU] x[AU] 2008 年 12 月 22 日月曜日

  8. Column density : dust continuum dust continuum : opt. thin in mm. bands - how about submm. band? ✦ � β � 0 . 25[mm] κ ν = 0 . 1 × T b = B ν (1 − exp( − τ ν )) λ max( τ )=0.40 max( τ )=0.80 max( τ )=2.01 1000 1000 1000 θ =0(pole-on) θ =30 (a) 150GHz (b) 220GHz (c) 350GHz 500 500 500 y[AU] y[AU] y[AU] 0 0 0 -500 -500 -500 -1000 -1000 -1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 x[AU] x[AU] x[AU] max( τ )=6.94 max( τ )=11.9 θ =60 θ =90(edge-on) 3.00e-02 1000 1000 (d) 650GHz (e) 850GHz 2.50e-02 500 500 2.00e-02 y[AU] y[AU] 0 0 τ 0 1.50e-02 T d =10K~T gas 1.00e-02 -500 -500 5.00e-03 -1000 -1000 0.00e+00 -1000 -500 0 500 1000 -1000 -500 0 500 1000 x[AU] x[AU] 2008 年 12 月 22 日月曜日

  9. Excitation Temperature : CO adopt “standard” mol. ✦ 12 abundance y=3x10 -4 10 8 n crit (1-0)~10 2 cm -3 , n crit ∝ J 3 ✦ 6 4 J=1-0 J=2-1 J=3-2 J=1-0 J=2-1 J=3-2 huge optical thickness ( τ 0 up ✦ 1-0 2-1 3-2 2 to 4,000) and high density 0 12 (10 6 cm -3 < n < 10 11 cm -3 ) in the T ex [K] T ex [K] 10 simulation box, pop. energy 8 distribution becomes LTE 6 even at high J (J=10-9) J=4-3 J=5-4 J=6-5 4 (T ex = T kin ~10K) J=4-3 J=5-4 J=6-5 4-3 5-4 6-5 2 0 12 10 8 J=7-6 J=8-7 J=9-8 6 4 J=7-6 J=8-7 J=9-8 7-6 8-7 9-8 n[cm -3 ] 2 0 10 6 10 7 10 8 10 9 10 10 10 6 10 7 10 8 10 9 10 10 10 6 10 7 10 8 10 9 10 10 10 11 10 11 10 11 n[cm -3 ] 2008 年 12 月 22 日月曜日

  10. Excitation Temperature : SiO adopt “standard” mol. ✦ 12 abundance y=2x10 -8 10 8 n crit (1-0)~10 5 cm -3 ✦ 6 ⇔ 10 6 cm -3 < n < 10 11 cm -3 4 J=1-0 J=2-1 J=3-2 1-0 2-1 3-2 2 low-J and in dense regime (n ✦ 0 12 > 10 8 cm -3 ), pop. is LTE T ex [K] 10 high-J and in tenuous regime ✦ 8 (n < 10 8 cm -3 ), T ex decreases to 6 ~ 5K 4 J=4-3 J=5-4 J=6-5 4-3 5-4 6-5 ⇒ non-LTE effects can be 2 0 observed ( ⇔ 12 CO) 12 10 8 6 4 J=7-6 J=8-7 J=9-8 7-6 8-7 9-8 n[cm -3 ] 2 0 10 6 10 7 10 8 10 9 10 10 10 6 10 7 10 8 10 9 10 10 10 6 10 7 10 8 10 9 10 10 10 11 10 11 10 11 n[cm -3 ] 2008 年 12 月 22 日月曜日

  11. Average Line Profile : CO θ =30deg, solid line: intensity, dashed line: τ 0 J=1-0 J=2-1 J=3-2 huge optical thickness ⇒ strongly saturated line profile ✦ very weak wing-like components around Vr=+/-2km/sec ✦ ... but even in these wing components, τ 0 ~100-400 ✦ qualitative characteristics are quite independent on viewing angle θ ✦ 2008 年 12 月 22 日月曜日

  12. Average Line Profile : SiO θ =30deg, solid line: intensity, dashed line: τ 0 J=1-0 J=4-3 J=7-6 optical thickness is still large, but smaller than 12 CO : line profiles do not show ✦ saturation < τ > SiO ~0.01x< τ > CO : SiO will present inner structures that 12 CO cannot ✦ non-LTE pop. & smaller τ ✦ ⇒ double peak profile appears with respect to Vr=0 km sec -1 qualitative characteristics are quite independent on viewing angle θ ✦ double-peak structure even in pole-on [ θ =0] view ✦ 2008 年 12 月 22 日月曜日

  13. Non-LTE results : PV diagram (CO) Huge τ and then almost feature-less PV diagram ✦ CO(2-1), 30deg, vel. 1st-moment 4.0 500 500 1000 (a) (b) 5.0 2.0 (a) (b) 400 400 0.5 Vr[km sec -1 ] Vr[km sec -1 ] 500 300 300 0.0 0.0 K K Vr[km sec -1 ] 200 200 y[AU] -2.0 0 0.0 (c) -5.0 100 100 -4.0 0 0 -500 Angular Offset Angular Offset -0.5 4.0 500 -1000 (c) -1000 0 1000 -500 500 2.0 x[AU] 400 (a) : spiky structure up to +/- 5 km sec-1, wobble ones by ✦ Vr[km sec -1 ] 300 several velocity components [outflow, rot. of outflow & disk, 0.0 K accretion of envelope, ...] 200 -2.0 (b) : small gradient from blue to red [mainly from disk] ✦ 100 -4.0 0 (c) : small gradient from red to blue in inner part [mainly from ✦ Angular Offset bipolar vel. of outflows] 2008 年 12 月 22 日月曜日

  14. Non-LTE results : PV diagram (CO) structures in (c) line ✦ CO(2-1), 30deg, 1st-moment (a) 500 1000 (a) (b) 5.0 400 0.5 500 Vr[km sec -1 ] 300 Vr[km sec -1 ] 0.0 K y[AU] 0 0.0 (c) 200 vel. gradient -500 -5.0 ( Δ v~1km/sec) -0.5 100 -1000 -1000 0 1000 -500 500 0 Angular Offset x[AU] spikes : appear all the PV diagrams of cuts through the very small near-center ✦ regions in FOV NOT appear in some of the cuts passing the very center ✦ velocity (+/- 5km sec -1 ) > bulk velocity of fluids (|v| up to 3 km sec -1 )! ✦ 2008 年 12 月 22 日月曜日

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend