role of ocean circulation in the climate response to
play

Role of ocean circulation in the climate response to meridional - PowerPoint PPT Presentation

Role of ocean circulation in the climate response to meridional energy imbalances My main button ? Francis Codron LOCEAN/IPSL, Sorbonne-Universit, Paris Motivation : Coupling of energy transports by atmosphere and ocean in the Tropics


  1. Role of ocean circulation in the climate response to meridional energy imbalances My main button ? Francis Codron LOCEAN/IPSL, Sorbonne-Université, Paris

  2. Motivation : Coupling of energy transports by atmosphere and ocean in the Tropics Atmosphere: Hadley cells. Ocean: Shallow circulation cells, driven by trade winds / Ekman transport • Mass transport is coupled by wind stress. • Energy transport in the same direction (Schneider et al, 2014)

  3. Slab ocean model F sens F lat F rad H QFlux • Oceanic surface mixed layer. 50-m depth • Temperature equation : !" # $ %& %' = ) *+,- + /)012 • F surf Surface fluxes • Qflux Ocean circulation. Prescribed or parameterized

  4. Ekman transport parameterization (Codron 2012, Clim. Dyn) • 2 slab layers, prognostic temperatures T s and T d • Ekman mass transport (vertical integral over surface layer) : ! " = − 1 & '× ⃗ * + = − , (At the equator, ! " - . + * / ) Opposite return flow at depth •

  5. Gent-McWilliams scheme (eddy diffusivity) H S H D Impact of eddy fluxes is to reduce the slope of isotherms. Ø Eddy-induced velocity, mass flux opposite in the 2 layers, proportionnal to the slope Ø Downgradient heat flux Ø Re-stratification

  6. Implementation • LMDZ AGCM, 96x96 grid points, 39 levels • Ocean-planet geometry, no sea ice (water does not freeze) • Obliquity (seasons), no eccentricity • Ekman and G&M transport, plus horizontal diffusion • No additional heat flux (Q-flux = 0)

  7. Mean northward energy transports 4 Ocean total Total (TOA) 3 6 Ekman Atmosphere 2 4 Eddies Diff. Ocean 1 2 PW PW 0 0 − 1 − 2 − 2 − 4 − 3 − 6 − 4 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude • Ocean energy transport dominates in the (deep) tropics • Ekman large, poleward in tropics • Equatorward, weaker mid-latitudes • Diffusive transport max in mid-latitudes

  8. Sensitivity experiments: 1. add 1 PW northward transport between 40°S and 40°S (as additional prescribed Q-flux in the slab) 2. CO 2 doubling • Interactive Ekman and diffusive transports (INT) • Ekman and diffusion prescribed (as Qflux) to the control run seasonal cycle (FIX)

  9. Northward energy transport difference, fixed ocean heat transport (OHT) 1 1 0.5 0.5 0 0 TOA TOA total Atmosphere Clear sky − 0.5 − 0.5 Ocean Clouds − 1 − 1 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude Ø Large compensation by radiative fluxes in mid-latitudes Ø Compensation by atmospheric transport in the Tropics (Clear-sky and cloud forcing responses cancel out) Ø North-South asymmetry

  10. Atmospheric circulation response, fixed OHT case Meridional Streamfunction (10 9 kg/s) Zonal wind fixed OHT 200 200 200 pressure (hPa) pressure (hPa) 400 400 400 600 600 600 800 800 800 1000 1000 1000 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 − − − − − − − − − − − − − − − − − − − − latitude latitude − − − − − 160 − 120 − 80 − 40 0 40 80 120 160 − 10 − 5 0 5 10 Ø Northward jet shifts Ø Cross-equatorial Hadley cell & opposite trade wind changes

  11. Northward energy transport difference, interactive ocean 1 Atmosphere Ocean 0.5 (PW) Fixed OHT 0 Inter. OHT − 0.5 − 1 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude Ø In the tropics, large compensation by ocean (Ekman cells) Ø Weaker atmospheric transport Ø More symmetric structure

  12. Response of Hadley cells (mean meridional streamfunction) fixed OHT interactive OHT 200 200 pressure (hPa) 400 400 600 600 800 800 1000 1000 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude − 160 − 120 − 80 − 40 0 40 80 120 160

  13. Response of zonal winds (m/s) colors = differences, contours = control run fixed OHT interactive OHT 200 200 pressure (hPa) 400 400 600 600 800 800 1000 1000 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude − 10 − 5 0 5 10 • Weak Hadley cell-related changes • Northern hemisphere : jet weakening northward shift • Southern jet strengthening & northward shift

  14. Precipitation response Control 10 1PW fixed OHT 1PW inter. OHT precip (mm/day) 5 0 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude Ø Fixed OHT : more precip in warmer hemisphere + shift of the peak. Ø Interactive ocean : very small changes

  15. Response to CO 2 doubling, fixed ocean transport Change in northward energy transport (PW) TOA 0.2 Atmosphere 0.1 0 − 0.1 − 0.2 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude Ø Small changes overall (0.2 / 6 PW) Ø Very small changes in the Tropics

  16. Circulation response, fixed ocean transport Control (contours), response to CO 2 (colors) Zonal wind Meridional streamfuction fixed OHT 200 200 pressure (hPa) pressure (hPa) 400 400 600 600 800 800 1000 1000 1000 − 80 − 60 − 40 − 20 0 20 40 60 80 − − − − − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude • Upward and poleward expansion / jet shift − − − • Hadley cell weakening (tropics)

  17. Response to CO 2 doubling : energy transport 0.2 0.1 (PW) 0 − 0.1 − 0.2 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude Atmosphere, fixed OHT Ekman, control / 10 Atmosphere, inter. OHT Ekman, response to CO 2 Ocean Ø Tropics : opposite changes in atmosphere and ocean Ø Weaker Hadley cell : less poleward ocean transport Ø Poleward expansion : more poleward ocean transport

  18. Response to CO 2 doubling : meridional streamfunction fixed OHT interactive OHT 200 200 pressure (hPa) 400 400 600 600 800 800 1000 1000 − 80 − 60 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude latitude − 15 − 12 − 9 − 6 − 3 0 3 6 9 12 15 Ø Interactive ocean : • Less weakening near equator, more in subtropics • Stronger poleward shift

  19. Response to CO 2 doubling : precipitation Control 1 CO 2 resp. fix OHT CO 2 resp. int OHT 0.75 mm / day 0.5 0.25 0 − 0.25 − 80 − 60 − 40 − 20 0 20 40 60 80 latitude Ø Precipitation increase in warmer climate Ø ITCZ moves poleward / equatorward with fixed / interactive ocean

  20. Summary - Conclusion Adding Ekman heat transport significantly modifies the response (circulation, ITCZ) to changes in energy budget • Inter-hemispheric transport : weaker Hadley cell & ITCZ response (compensation by ocean energy transport) • CO 2 increase : total transport does not change (much), but compensating changes in atmosphere and ocean, due to Hadley cell weakening & poleward expansion. • Perturbations in the meridional energy transport = coupled problem

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend