robust treatment of degenerate elements in interactive
play

Robust Treatment of Degenerate Elements in Interactive Corotational - PowerPoint PPT Presentation

Robust Treatment of Degenerate Elements in Interactive Corotational FEM Simulations O. Civit-Flores and A. Sus n UPC-BarcelonaTech June 11, 2014 O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 1 / 36 Outline Introduction 1


  1. Robust Treatment of Degenerate Elements in Interactive Corotational FEM Simulations O. Civit-Flores and A. Sus´ ın UPC-BarcelonaTech June 11, 2014 O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 1 / 36

  2. Outline Introduction 1 Corotational FEM 2 Rotation extraction 3 Degeneration-Aware Polar Decomposition 4 Results 5 O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 2 / 36

  3. Interactive FEM Interactive simulation of deformable solids using FEM Applications: Virtual reality, surgery, training... Videogames Requirements: User interaction Efficiency Robustness Realism O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 3 / 36

  4. Contribution Element degeneration threatens robustness and realism: We identify issues with existing degenerate element treatment schemes We propose a new method that avoids them O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 4 / 36

  5. Outline Introduction 1 Corotational FEM 2 Rotation extraction 3 Degeneration-Aware Polar Decomposition 4 Results 5 O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 5 / 36

  6. Finite Element Method Partition the computational domain Ω into sub-domains Ω i with N shared nodes O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 6 / 36

  7. Linear FEM Tetrahedral elements:       r 1 x 1 f 1 . . . . . . r e = x e = f e =  ,  ,       . . .     r 4 x 4 f 4 The elastic forces on the nodes are: f e = −K e u e , u e = x e − r e Properties: Constant stiffness matrix K e Invariant to translation, but not to rotation O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 7 / 36

  8. Linear FEM linearization error From [1] O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 8 / 36

  9. Corotational Linear FEM (I) Idea : Apply LFEM in a reference system local to each element r 1 x 1 R r 3 r 2 x 3 x 2 O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 9 / 36

  10. Corotational Linear FEM (II) Compute deformation matrix F : 1 F = D ( x e ) D ( r e ) − 1 , � � D ( v e ) = v 2 − v 1 v 3 − v 1 v 4 − v 1 Factorize into rotation and scaling: 2 F = RS Apply linear elasticity in local coordinates: 3 f e = −R e K e ( R T e x e − r e ) Properties: Geometrically non-linear Invariant to translation and rotation O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 10 / 36

  11. Corotational Linear FEM (II) Compute deformation matrix F : 1 F = D ( x e ) D ( r e ) − 1 , � � D ( v e ) = v 2 − v 1 v 3 − v 1 v 4 − v 1 Factorize into rotation and scaling: 2 F = RS Apply linear elasticity in local coordinates: 3 f e = −R e K e ( R T e x e − r e ) Properties: Geometrically non-linear Invariant to translation and rotation O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 10 / 36

  12. Corotational Linear FEM (II) Compute deformation matrix F : 1 F = D ( x e ) D ( r e ) − 1 , � � D ( v e ) = v 2 − v 1 v 3 − v 1 v 4 − v 1 Factorize into rotation and scaling: 2 F = RS Apply linear elasticity in local coordinates: 3 f e = −R e K e ( R T e x e − r e ) Properties: Geometrically non-linear Invariant to translation and rotation O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 10 / 36

  13. Corotational Linear FEM (II) Compute deformation matrix F : 1 F = D ( x e ) D ( r e ) − 1 , � � D ( v e ) = v 2 − v 1 v 3 − v 1 v 4 − v 1 Factorize into rotation and scaling: 2 F = RS Apply linear elasticity in local coordinates: 3 f e = −R e K e ( R T e x e − r e ) Properties: Geometrically non-linear Invariant to translation and rotation O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 10 / 36

  14. Corotational Linear FEM (II) Compute deformation matrix F : 1 F = D ( x e ) D ( r e ) − 1 , � � D ( v e ) = v 2 − v 1 v 3 − v 1 v 4 − v 1 Factorize into rotation and scaling: 2 F = RS Apply linear elasticity in local coordinates: 3 f e = −R e K e ( R T e x e − r e ) Properties: Geometrically non-linear Invariant to translation and rotation O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 10 / 36

  15. Dynamics and Quasistatics Node positions x ∈ R 3 N are the DOF: Dynamics: M ¨ x = f s ( x ) + f d ( x , ˙ x ) + f ext Quasistatics: f s ( x ) = − f ext O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 11 / 36

  16. Element Degeneration Collapse with | det ( F ) | < ǫ or inversion with det ( F ) < 0 Unphysical Unavoidable with (finite) linear forces Unavoidable due to discretization Unavoidable due to user interaction det ( F ) < ǫ affects F = RS factorization O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 12 / 36

  17. Element Degeneration Collapse with | det ( F ) | < ǫ or inversion with det ( F ) < 0 Unphysical Unavoidable with (finite) linear forces Unavoidable due to discretization Unavoidable due to user interaction det ( F ) < ǫ affects F = RS factorization O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 12 / 36

  18. Element Degeneration Collapse with | det ( F ) | < ǫ or inversion with det ( F ) < 0 Unphysical Unavoidable with (finite) linear forces Unavoidable due to discretization Unavoidable due to user interaction det ( F ) < ǫ affects F = RS factorization O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 12 / 36

  19. Element Degeneration Collapse with | det ( F ) | < ǫ or inversion with det ( F ) < 0 Unphysical Unavoidable with (finite) linear forces Unavoidable due to discretization Unavoidable due to user interaction det ( F ) < ǫ affects F = RS factorization From [2] O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 12 / 36

  20. Element Degeneration Collapse with | det ( F ) | < ǫ or inversion with det ( F ) < 0 Unphysical Unavoidable with (finite) linear forces Unavoidable due to discretization Unavoidable due to user interaction det ( F ) < ǫ affects F = RS factorization O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 12 / 36

  21. Element Degeneration Collapse with | det ( F ) | < ǫ or inversion with det ( F ) < 0 Unphysical Unavoidable with (finite) linear forces Unavoidable due to discretization Unavoidable due to user interaction det ( F ) < ǫ affects F = RS factorization O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 12 / 36

  22. Outline Introduction 1 Corotational FEM 2 Rotation extraction 3 Degeneration-Aware Polar Decomposition 4 Results 5 O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 13 / 36

  23. Methods Several methods to extract R from F are possible: Polar Decomposition [1] QR Factorization [3] Hybrid PD-QR [5] Modified Singular Value Decomposition (SVD1) [2] Coherent Singular Value Decomposition (SVD2) [4] Project/Reflect [6] Degeneration-Aware Polar Decomposition [ ? ] O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 14 / 36

  24. Polar Decomposition Factorizes F = RS , where R is orthonormal and S is symmetric Best matching, minimizes �F − R� 2 F Fails if | det ( F ) | ≤ ǫ (collapsed) Reflected R with det ( R ) = − 1 if det ( F ) < 0 (inverted) O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 15 / 36

  25. Polar Decomposition Factorizes F = RS , where R is orthonormal and S is symmetric Best matching, minimizes �F − R� 2 F Fails if | det ( F ) | ≤ ǫ (collapsed) Reflected R with det ( R ) = − 1 if det ( F ) < 0 (inverted) O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 15 / 36

  26. Polar Decomposition Factorizes F = RS , where R is orthonormal and S is symmetric Best matching, minimizes �F − R� 2 F Fails if | det ( F ) | ≤ ǫ (collapsed) Reflected R with det ( R ) = − 1 if det ( F ) < 0 (inverted) O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 15 / 36

  27. QR Factorization Factorizes F = RE using Gram-Schmidt orthonormalization, where R is orthonormal and E is upper-triangular Fast and Robust Handles collapsed and inverted elements seamlessly Induces Anisotropy Critical point on collapse plane O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 16 / 36

  28. QR Factorization Factorizes F = RE using Gram-Schmidt orthonormalization, where R is orthonormal and E is upper-triangular Fast and Robust Handles collapsed and inverted elements seamlessly Induces Anisotropy Critical point on collapse plane O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 16 / 36

  29. QR Factorization Factorizes F = RE using Gram-Schmidt orthonormalization, where R is orthonormal and E is upper-triangular Fast and Robust Handles collapsed and inverted elements seamlessly Induces Anisotropy Critical point on collapse plane O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 16 / 36

  30. Hybrid PD-QR Use Polar Decomposition for undegenerate elements and QR for degenerate ones below a threshold det ( F ) < α Inherits good properties of PD and QR... ...but also the drawbacks of QR... ...and adds discontinuity across transition O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 17 / 36

  31. Hybrid PD-QR Use Polar Decomposition for undegenerate elements and QR for degenerate ones below a threshold det ( F ) < α Inherits good properties of PD and QR... ...but also the drawbacks of QR... ...and adds discontinuity across transition O. Civit-Flores & A. Susin (UPC) DAPD June 11, 2014 17 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend