robust streaming codes based on deterministic channel
play

Robust Streaming Codes based on Deterministic Channel Approximations - PowerPoint PPT Presentation

Robust Streaming Codes based on Deterministic Channel Approximations Ashish Khisti University of Toronto Joint Work with Ahmed Badr (Toronto), Wai-Tian Tan (HP Labs) and John Apostolopoulos (HP Labs) ISIT, 2013 July 9th 2013 Motivation -


  1. Robust Streaming Codes based on Deterministic Channel Approximations Ashish Khisti University of Toronto Joint Work with Ahmed Badr (Toronto), Wai-Tian Tan (HP Labs) and John Apostolopoulos (HP Labs) ISIT, 2013 July 9th 2013

  2. Motivation - Delay Sensitive Communication Delay is a central issue in many applications 1 Application Bit-Rate MSDU (B) Delay (ms) Delay (pkts) PLR 10 − 4 Video Conf. 2 Mbps 1500 100 ms 24 Interactive Gaming 1Mbps 512 50 ms 12 10 − 4 10 − 6 SDTV 4Mbps 1500 200 ms 60 Communication Medium: Wireless Channel. 1 IEEE Usage Model Proposal (doc.: IEEE 802.11-03/802r23) ISIT, 2013 July 9th 2013 2/ 17

  3. Motivation - Delay Sensitive Communication Delay is a central issue in many applications 1 Application Bit-Rate MSDU (B) Delay (ms) Delay (pkts) PLR 10 − 4 Video Conf. 2 Mbps 1500 100 ms 24 Interactive Gaming 1Mbps 512 50 ms 12 10 − 4 10 − 6 SDTV 4Mbps 1500 200 ms 60 Communication Medium: Wireless Channel. Prior Work - Real Time Streaming Communication Structural Theorems on Real-Time Encoders (Witsenhausen ’79, Teneketzis ’06) Tree Codes (Schulman ’96, Sahai ’01, Sukhavasi and Hassibi ’11) Real-Time Scheduling (Hou and Kumar ’11, Shakkottai and Srikanth ’11) Low-delay Path Selection (Chen et. al.) 1 IEEE Usage Model Proposal (doc.: IEEE 802.11-03/802r23) ISIT, 2013 July 9th 2013 2/ 17

  4. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  5. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  6. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  7. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  8. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  9. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  10. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  11. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  12. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  13. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  14. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  15. Real-Time Streaming Model ISIT, 2013 July 9th 2013 3/ 17

  16. Problem Setup Assume s [ t ] ∈ F k q , i.i.d. uniform x [ t ] ∈ F n q . Causal Encoder. Rate: R = k n ISIT, 2013 July 9th 2013 4/ 17

  17. Problem Setup Assume s [ t ] ∈ F k q , i.i.d. uniform x [ t ] ∈ F n q . Causal Encoder. Rate: R = k n Channel C ( N, B, W ) : Any sliding window of length W contains A burst of maximum length B , or, No more than N erasures in arbitrary positions. (N,B,W) = (2,3,6) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 W = 6 N = 2 ISIT, 2013 July 9th 2013 4/ 17

  18. Problem Setup Assume s [ t ] ∈ F k q , i.i.d. uniform x [ t ] ∈ F n q . Causal Encoder. Rate: R = k n Channel C ( N, B, W ) : Any sliding window of length W contains A burst of maximum length B , or, No more than N erasures in arbitrary positions. (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) 0 0 1 1 2 2 3 4 5 3 4 5 6 7 6 7 8 8 9 9 10 10 11 12 11 12 13 13 14 15 14 15 W = 6 W = 6 N = 2 N = 2 ISIT, 2013 July 9th 2013 4/ 17

  19. Problem Setup Assume s [ t ] ∈ F k q , i.i.d. uniform x [ t ] ∈ F n q . Causal Encoder. Rate: R = k n Channel C ( N, B, W ) : Any sliding window of length W contains A burst of maximum length B , or, No more than N erasures in arbitrary positions. (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) 0 0 0 1 1 1 2 2 2 3 4 5 3 4 5 3 4 5 6 7 6 7 6 7 8 8 8 9 9 9 10 10 10 11 12 11 12 11 12 13 13 13 14 15 14 15 14 15 W = 6 W = 6 W = 6 N = 2 N = 2 N = 2 ISIT, 2013 July 9th 2013 4/ 17

  20. Problem Setup Assume s [ t ] ∈ F k q , i.i.d. uniform x [ t ] ∈ F n q . Causal Encoder. Rate: R = k n Channel C ( N, B, W ) : Any sliding window of length W contains A burst of maximum length B , or, No more than N erasures in arbitrary positions. (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) 0 0 0 0 1 1 1 1 2 2 2 2 3 4 5 3 4 5 3 4 5 3 4 5 6 7 6 7 6 7 6 7 8 8 8 8 9 9 9 9 10 10 10 10 11 12 11 12 11 12 11 12 13 13 13 13 14 15 14 15 14 15 14 15 W = 6 W = 6 W = 6 W = 6 N = 2 N = 2 N = 2 B = 3 ISIT, 2013 July 9th 2013 4/ 17

  21. Problem Setup Assume s [ t ] ∈ F k q , i.i.d. uniform x [ t ] ∈ F n q . Causal Encoder. Rate: R = k n Channel C ( N, B, W ) : Any sliding window of length W contains A burst of maximum length B , or, No more than N erasures in arbitrary positions. (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) (N,B,W) = (2,3,6) 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 9 9 9 9 9 10 10 10 10 10 11 12 11 12 11 12 11 12 11 12 13 13 13 13 13 14 15 14 15 14 15 14 15 14 15 W = 6 W = 6 W = 6 W = 6 W = 6 N = 2 N = 2 N = 2 B = 3 B = 3 Capacity R ( N, B, W, T ) ISIT, 2013 July 9th 2013 4/ 17

  22. Main Result Theorem Consider the C ( N, B, W ) channel, with W ≥ B + 1 , and let the delay be T . Upper-Bound (Badr et al. INFOCOM’13) For any rate R code, we have: � � R B + N ≤ min( W, T + 1) 1 − R ISIT, 2013 July 9th 2013 5/ 17

  23. Main Result Theorem Consider the C ( N, B, W ) channel, with W ≥ B + 1 , and let the delay be T . Upper-Bound (Badr et al. INFOCOM’13) For any rate R code, we have: � � R B + N ≤ min( W, T + 1) 1 − R Lower-Bound: There exists a rate R code that satisfies: � � R B + N ≥ min( W, T + 1) − 1 . 1 − R The gap between the upper and lower bound is 1 unit of delay. ISIT, 2013 July 9th 2013 5/ 17

  24. Error Correction: Baseline Techniques s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 k x i n p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 H i ∈ F k × n − k p i = s i · H 0 + s i − 1 · H 1 + . . . + s i − M · H M , q Erasure Codes: Random Linear Codes Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06 ) ISIT, 2013 July 9th 2013 6/ 17

  25. Error Correction: Baseline Techniques s 0 s 0 s 1 s 1 s 2 s 2 s 3 s 3 s 4 s 4 s 5 s 5 s 6 s 6 s 7 s 7 k k x i x i n n p 0 p 0 p 1 p 1 p 2 p 2 p 3 p 3 p 4 p 4 p 5 p 5 p 6 p 6 p 7 p 7 H i ∈ F k × n − k p i = s i · H 0 + s i − 1 · H 1 + . . . + s i − M · H M , q Erasure Codes: Random Linear Codes Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06 ) ISIT, 2013 July 9th 2013 6/ 17

  26. Error Correction: Baseline Techniques s 0 s 0 s 0 s 1 s 1 s 1 s 2 s 2 s 2 s 3 s 3 s 3 s 4 s 4 s 4 s 5 s 5 s 5 s 6 s 6 s 6 s 7 s 7 s 7 k k k x i x i x i n n n p 0 p 0 p 0 p 1 p 1 p 1 p 2 p 2 p 2 p 3 p 3 p 3 p 4 p 4 p 4 p 5 p 5 p 5 p 6 p 6 p 6 p 7 p 7 p 7 H i ∈ F k × n − k p i = s i · H 0 + s i − 1 · H 1 + . . . + s i − M · H M , q Erasure Codes: Random Linear Codes Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06 ) ISIT, 2013 July 9th 2013 6/ 17

  27. Error Correction: Baseline Techniques s 0 s 0 s 0 s 0 s 1 s 1 s 1 s 1 s 2 s 2 s 2 s 2 s 3 s 3 s 3 s 3 s 4 s 4 s 4 s 4 s 5 s 5 s 5 s 5 s 6 s 6 s 6 s 6 s 7 s 7 s 7 s 7 k k k k x i x i x i x i n n n n p 0 p 0 p 0 p 0 p 1 p 1 p 1 p 1 p 2 p 2 p 2 p 2 p 3 p 3 p 3 p 3 p 4 p 4 p 4 p 4 p 5 p 5 p 5 p 5 p 6 p 6 p 6 p 6 p 7 p 7 p 7 p 7 H i ∈ F k × n − k p i = s i · H 0 + s i − 1 · H 1 + . . . + s i − M · H M , q Erasure Codes: Random Linear Codes Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06 ) ISIT, 2013 July 9th 2013 6/ 17

  28. Error Correction: Baseline Techniques s 0 s 0 s 0 s 0 s 0 s 1 s 1 s 1 s 1 s 1 s 2 s 2 s 2 s 2 s 2 s 3 s 3 s 3 s 3 s 3 s 4 s 4 s 4 s 4 s 4 s 5 s 5 s 5 s 5 s 5 s 6 s 6 s 6 s 6 s 6 s 7 s 7 s 7 s 7 s 7 k k k k k x i x i x i x i x i n n n n n p 0 p 0 p 0 p 0 p 0 p 1 p 1 p 1 p 1 p 1 p 2 p 2 p 2 p 2 p 2 p 3 p 3 p 3 p 3 p 3 p 4 p 4 p 4 p 4 p 4 p 5 p 5 p 5 p 5 p 5 p 6 p 6 p 6 p 6 p 6 p 7 p 7 p 7 p 7 p 7 H i ∈ F k × n − k p i = s i · H 0 + s i − 1 · H 1 + . . . + s i − M · H M , q Erasure Codes: Random Linear Codes Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06 ) ISIT, 2013 July 9th 2013 6/ 17

  29. Error Correction: Baseline Techniques s 0 s 0 s 0 s 0 s 0 s 0 s 1 s 1 s 1 s 1 s 1 s 1 s 2 s 2 s 2 s 2 s 2 s 2 s 3 s 3 s 3 s 3 s 3 s 3 s 4 s 4 s 4 s 4 s 4 s 4 s 5 s 5 s 5 s 5 s 5 s 5 s 6 s 6 s 6 s 6 s 6 s 6 s 7 s 7 s 7 s 7 s 7 s 7 k k k k k k x i x i x i x i x i x i n n n n n n p 0 p 0 p 0 p 0 p 0 p 0 p 1 p 1 p 1 p 1 p 1 p 1 p 2 p 2 p 2 p 2 p 2 p 2 p 3 p 3 p 3 p 3 p 3 p 3 p 4 p 4 p 4 p 4 p 4 p 4 p 5 p 5 p 5 p 5 p 5 p 5 p 6 p 6 p 6 p 6 p 6 p 6 p 7 p 7 p 7 p 7 p 7 p 7 H i ∈ F k × n − k p i = s i · H 0 + s i − 1 · H 1 + . . . + s i − M · H M , q Erasure Codes: Random Linear Codes Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06 ) ISIT, 2013 July 9th 2013 6/ 17

  30. Error Correction: Baseline Techniques s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 2 s 2 s 2 s 2 s 2 s 2 s 2 s 3 s 3 s 3 s 3 s 3 s 3 s 3 s 4 s 4 s 4 s 4 s 4 s 4 s 4 s 5 s 5 s 5 s 5 s 5 s 5 s 5 s 6 s 6 s 6 s 6 s 6 s 6 s 6 s 7 s 7 s 7 s 7 s 7 s 7 s 7 k k k k k k k x i x i x i x i x i x i x i n n n n n n n p 0 p 0 p 0 p 0 p 0 p 0 p 0 p 1 p 1 p 1 p 1 p 1 p 1 p 1 p 2 p 2 p 2 p 2 p 2 p 2 p 2 p 3 p 3 p 3 p 3 p 3 p 3 p 3 p 4 p 4 p 4 p 4 p 4 p 4 p 4 p 5 p 5 p 5 p 5 p 5 p 5 p 5 p 6 p 6 p 6 p 6 p 6 p 6 p 6 p 7 p 7 p 7 p 7 p 7 p 7 p 7 Recover s 0 , s 1 , s 2 , s 3 H i ∈ F k × n − k p i = s i · H 0 + s i − 1 · H 1 + . . . + s i − M · H M , q Erasure Codes: Random Linear Codes Strongly-MDS Codes (Gabidulin’88, Gluesing-Luerssen’06 ) ISIT, 2013 July 9th 2013 6/ 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend