revisiting the institutional approach to herbrand s
play

Revisiting the Institutional Approach to Herbrands Theorem Ionu uu - PowerPoint PPT Presentation

Revisiting the Institutional Approach to Herbrands Theorem Ionu uu 1,2 Jos Luiz Fiadeiro 1 1 Department of Computer Science, Royal Holloway University of London 2 Simion Stoilow Institute of Mathematics of the Romanian Academy 6 th


  1. Revisiting the Institutional Approach to Herbrand’s Theorem Ionuţ Ţuţu 1,2 José Luiz Fiadeiro 1 1 Department of Computer Science, Royal Holloway University of London 2 Simion Stoilow Institute of Mathematics of the Romanian Academy 6 th Conference on Algebra and Coalgebra in Computer Science Nijmegen, 2015

  2. Herbrand’s Fundamental Theorem • central result in proof theory • deals with the reduction of provability in first-order logic to provability in propositional logic ∃ { x 1 , . . . , x n } · ρ ( x 1 , . . . , x n ) is valid if and only if there is a sequence of terms t 1 , . . . , t n such that ρ ( t 1 , . . . , t n ) is valid 1929

  3. Herbrand’s Fundamental Theorem • central result in proof theory • deals with the reduction of provability in first-order logic to provability in propositional logic ∃ { x 1 , . . . , x n } · ρ ( x 1 , . . . , x n ) is valid if and only if there is a sequence of terms t 1 , . . . , t n such that ρ ( t 1 , . . . , t n ) is valid 1929

  4. Herbrand’s Fundamental Theorem • central result in proof theory • deals with the reduction of provability in first-order logic to provability in propositional logic • difficulties in following the proof and errors reported by Bernays and Gödel Herbrand 1929 1940

  5. Herbrand’s Fundamental Theorem • central result in proof theory • deals with the reduction of provability in first-order logic to provability in propositional logic • gaps and counterexamples found by Dreben, Andrews, and Aanderaa • the publication of the first emended (and detailed) proof of the result Herbrand 1929 1963

  6. The resolution inference rule • introduced by Robinson • well-suited for automation ∃ X · Q ∧ g ∀ Y · c ← H θ ∃ X ′ · θ ( Q ) ∧ θ ( H ) • led to the development of logic programming – prolog (Kowalski & Colmerauer) Herbrand 1929 1965

  7. The resolution inference rule • introduced by Robinson • well-suited for automation ∃ X · Q ∧ g ∀ Y · c ← H θ ∃ X ′ · θ ( Q ) ∧ θ ( H ) • led to the development of logic programming – prolog (Kowalski & Colmerauer) Herbrand Robinson 1929 1973 1965

  8. Foundations of logic programming Given a logic program Γ , the answers to an existential query can be found simply by examining a term model – the least Herbrand model – instead ∃ { x } · “ x is a number” of all the models that satisfy Γ . ∧ “ x Prolog programmers 1. Γ � Σ ∃ X · ρ can change a lightbulb” 2. 0 Σ , Γ � Σ ∃ X · ρ 3. There exists ψ : X → Y such that Γ � Σ ∀ Y · ψ ( ρ ) . Herbrand Robinson 1929 1965 1984

  9. Foundations of logic programming Given a logic program Γ , the answers to an existential query can be found simply by examining a term model – the least Herbrand model – instead ∃ { x } · “ x is a number” of all the models that satisfy Γ . ∧ “ x Prolog programmers 1. Γ � Σ ∃ X · ρ can change a lightbulb” 2. 0 Σ , Γ � Σ ∃ X · ρ 3. There exists ψ : X → Y such that Γ � Σ ∀ Y · ψ ( ρ ) . Herbrand Robinson 1929 1965 1984

  10. Foundations of logic programming Given a logic program Γ , the answers to an existential query can be found simply by examining a term model – the least Herbrand model – instead ∃ { x } · “ x is a number” of all the models that satisfy Γ . ∧ “ x Prolog programmers 1. Γ � Σ ∃ X · ρ can change a lightbulb” 2. 0 Σ , Γ � Σ ∃ X · ρ 3. There exists ψ : X → Y such that Γ � Σ ∀ Y · ψ ( ρ ) . Herbrand Robinson 1929 1965 1984

  11. Foundations of logic programming Given a logic program Γ , the answers to an existential query can be found simply by examining a term model – the least Herbrand model – instead ∃ { x } · “ x is a number” of all the models that satisfy Γ . ∧ “ x Prolog programmers 1. Γ � Σ ∃ X · ρ can change a lightbulb” 2. 0 Σ , Γ � Σ ∃ X · ρ 3. There exists ψ : X → Y such that Γ � Σ ∀ Y · ψ ( ρ ) . Herbrand Robinson 1929 1965 1984

  12. A multitude of variants • relational first-order logic • many-sorted equational logic • higher-order logic • hidden algebra ∃ { x , y } · sorted ( 2, 3, x , y , 5 ) • institution-independent • service-oriented • abstract logic programming Herbrand Robinson 1929 1965 1984

  13. A multitude of variants • relational first-order logic • many-sorted equational logic • higher-order logic • hidden algebra ∃ { x : Num } · sorted ( 2, 3, x ) = T • institution-independent • service-oriented • abstract logic programming Herbrand Robinson Lloyd 1929 1965 1984

  14. A multitude of variants • relational first-order logic • many-sorted equational logic • higher-order logic • hidden algebra ∃ { s : List → B } · s [ 2, 3, 5 ] = T • institution-independent • service-oriented • abstract logic programming Herbrand Robinson Lloyd 1929 1965 1984

  15. A multitude of variants • relational first-order logic • many-sorted equational logic • higher-order logic • hidden algebra ∃ { s : Stream } · s ∼ tail ( s ) • institution-independent • service-oriented • abstract logic programming Herbrand Robinson Lloyd 1929 2002 1965 1984

  16. � � A multitude of variants • relational first-order logic • many-sorted equational logic � S ig, Sen, Mod, � � • higher-order logic Sen ( Σ ) • hidden algebra Sen ✶ • institution-independent Σ � Σ ✌ • service-oriented Mod Mod ( Σ ) • abstract logic programming Herbrand Robinson Lloyd 1929 2004 1965 1984

  17. A multitude of variants • relational first-order logic • many-sorted equational logic � S ig, Sen, Mod, � � • higher-order logic subject to a • hidden algebra satisfaction condition: for every ϕ : Σ → Ω , • institution-independent M ∈ | Mod ( Ω ) | , ρ ∈ Sen ( Σ ) • service-oriented iff M ↾ ϕ � Σ ρ M � Ω ϕ ( ρ ) • abstract logic programming Herbrand Robinson Lloyd 1929 2004 1965 1984

  18. A multitude of variants • relational first-order logic ∃ o · { r 1 , r 2 } • many-sorted equational logic • higher-order logic • hidden algebra • institution-independent • service-oriented • abstract logic programming Herbrand Robinson Lloyd 1929 2004 2013 1965 1984

  19. A multitude of variants • relational first-order logic • many-sorted equational logic • higher-order logic • hidden algebra ∃ { x , y } · sorted ( 2, 3, x , y , 5 ) • institution-independent χ : � F , P � ֒ →� F ∪ { x , y } , P � • service-oriented ∃ χ · sorted ( 2, 3, x , y , 5 ) • abstract logic programming Herbrand Robinson Lloyd 1929 2004 2013 1965 1984

  20. � � � � � � � A multitude of variants • relational first-order logic Sen Σ ( X ) • many-sorted equational logic ✴ � • higher-order logic Σ X ✖ ❴ Mod Σ ( X ) • hidden algebra ϕ Sen Ω ( X ϕ ) • institution-independent X ϕ ✴ � � Ω ✖ • service-oriented Mod Ω ( X ϕ ) • abstract logic programming Herbrand Robinson Lloyd 1929 2004 2014 1965 1984

  21. � � A multitude of variants • relational first-order logic Sen Σ ( X ) • many-sorted equational logic ✴ � • higher-order logic Σ X ✖ Mod Σ ( X ) • hidden algebra • institution-independent ∃ X · ρ • service-oriented • abstract logic programming Herbrand Robinson Lloyd 1929 2004 2014 1965 1984

  22. � � Institutions as functors • each institution I = � S ig , Sen , Mod , � � can be identified with a functor Rooms and corridors I : S ig → R oom α � S , M , � � � S ′ , M ′ , where I ( Σ ) = � Sen ( Σ ) , Mod ( Σ ) , � Σ � � ′ � β • similarly, substitution systems can be defined as functors S : S ubst → G / R oom Herbrand Robinson Lloyd 1929 2004 2014 1965 1984

  23. � � � From institutions to substitution systems • let Q be a class of signature morphisms of an institution I : S ig → R oom I ( Σ ) For every I -signature Σ we obtain a substi- I ( χ 2 ) I ( χ 1 ) tution system SI Q Σ : S ubst Q Σ → I ( Σ ) / R oom : I ( Σ ( χ 1 )) I ( Σ ( χ 2 )) • the objects of S ubst Q Σ are signature morphisms χ : Σ → Σ ( χ ) belonging to Q � Sen Σ ( ψ ) ,Mod Σ ( ψ ) � • a Σ -substitution ψ : χ 1 → χ 2 is a corridor � Sen Σ ( ψ ) , Mod Σ ( ψ ) � : I ( Σ ( χ 1 )) → I ( Σ ( χ 2 )) Herbrand Robinson Lloyd 1929 2004 2014 1965 1984

  24. � � � Quantification spaces • for every subcategory Q ⊆ S ig � , the functor ϕ Σ ′ Σ dom : Q → S ig gives rise to a natural transformation ι Q : ( _ / Q ) ⇒ dom op ; ( _ / C ) χ ′ χ � Ω ′ Ω φ Definition. Q is said to be a quantification space for an institution I : S ig → R oom if �→ ι Q , χ 1. every arrow in Q forms a pushout in S ig , and ϕ � Σ ′ Σ 2. ι Q is a natural isomorphism. Herbrand Robinson Lloyd 1929 2004 2014 1965 1984

  25. � � � Quantification spaces • for every subcategory Q ⊆ S ig � , the functor ϕ Σ ′ Σ dom : Q → S ig gives rise to a natural transformation ι Q : ( _ / Q ) ⇒ dom op ; ( _ / C ) χ ϕ χ Σ ( χ ) ϕ χ � Σ ′ ( χ ϕ ) Definition. Q is said to be a quantification space for an institution I : S ig → R oom if �→ ι Q , χ 1. every arrow in Q forms a pushout in S ig , and ϕ � Σ ′ Σ 2. ι Q is a natural isomorphism. Herbrand Robinson Lloyd 1929 2004 2014 1965 1984

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend