renormalization and euler maclaurin formula on cones
play

Renormalization and Euler-Maclaurin Formula on Cones Li GUO (joint - PowerPoint PPT Presentation

Renormalization and Euler-Maclaurin Formula on Cones Li GUO (joint work with Sylvie Paycha and Bin Zhang) Rutgers University at Newark Outline Conical zeta values and multiple zeta values; Double shuffle relations and double subdivision


  1. Renormalization and Euler-Maclaurin Formula on Cones Li GUO (joint work with Sylvie Paycha and Bin Zhang) Rutgers University at Newark

  2. Outline ◮ Conical zeta values and multiple zeta values; ◮ Double shuffle relations and double subdivision relations; ◮ Renormalization of conical zeta values; ◮ Euler-Maclaurin formula. 2

  3. Cones ◮ A (closed polyhedral) cone in R k ≥ 0 is defined to be the convex set � v 1 , · · · , v n � := R ≥ 0 v 1 + · · · + R ≥ 0 v n , v i ∈ R k ≥ 0 , 1 ≤ i ≤ n . ◮ The interior of a cone � v 1 , · · · , v n � is an open (polyhedral) cone � v 1 , · · · , v n � o := R > 0 v 1 + · · · + R > 0 v n . ◮ The set { v 1 , · · · , v n } is called the generating set or the spanning set of the cone. The dimension of a cone is the dimension of linear subspace generated by it. ◮ Let C k (resp. OC k ) denote the set of closed (resp. open cones) in R k , k ≥ 1. For k = 0 we set C 0 = { 0 } (resp. OC 0 = { 0 } ) by convention. Through the natural inclusions C k → C k + 1 (resp. OC k → OC k + 1 ) from the natural inclusion R k → R k + 1 , we define C = lim → C k (resp. − OC = lim → OC k ). − 3

  4. ◮ A simplicial cone is defined to be a cone spanned by linearly independent vectors. ◮ A rational cone is a cone spanned by vectors in Z k ⊆ R k . ◮ A smooth cone is a rational cone with a spanning set that is a part of a basis of Z k ⊆ R k . In this case, the spanning set is unique and is called the primary set of the cone. ◮ A cone is called strongly convex or pointed if it does not contain any linear subspace. ◮ A subdivision of a closed cone C ∈ C k is a set { C 1 , · · · , C r } ⊆ C k such that C = ∪ r i = 1 C i , C 1 , · · · , C r have the same dimension C and intersect along their faces. The faces of the relative interior give an open subdivision of C o : � e 1 , e 2 � = � e 1 , e 1 + e 2 � ⊔ � e 1 + e 2 , e e � ⇒ � e 1 , e 2 � o = � e 1 , e 1 + e 2 � o ⊔ � e 1 + e 2 , e e � o ⊔ � e 1 + e 2 � o . y = ( y 1 , · · · , y k ) in R k , let ( � ◮ For � x = ( x 1 , · · · , x k ) and � x ,� y ) denote the inner product x 1 y 1 + · · · + x k y k . Through this inner product, R k is identified with its own dual space ( R k ) ∗ . 4

  5. Conical zeta values ◮ Let C be a smooth cone. The conical zeta function of C is 1 � s ∈ C k , ζ ( C ; � ,� s ) := n s 1 1 · · · n s k k ( n 1 , ··· , n k ) ∈ C o ∩ Z k if the sum converges. When s i , 1 ≤ i ≤ k , are integers, ζ ( � s ) is called a conical zeta value (CZV). Convention: 0 s = 1 for any s . Hence ζ ( � s ) does not depend on the choice of k . ◮ If s i ≥ 2 , 1 ≤ i ≤ k , then ζ ( C ; � s ) converges. ◮ If { C i } i is an open cone subdivision of C , then � ζ ( C ; � ζ ( C i ; � s ) = s ) . i ◮ The cone subdivision � e 1 , e 2 � o = � e 1 , e 1 + e 2 � o ⊔ � e 1 + e 2 , e 2 � o ⊔ � e 1 + e 2 � o gives ζ ( � e 1 , e 2 � o ; ( s 1 , s 2 )) = ζ ( � e 1 , e 1 + e 2 � o ; ( s 1 , s 2 )) + ζ ( � e 1 + e 2 , e 2 � o ; ( s 1 , s 2 ) + ζ ( � e 1 + e 2 � o ; ( s 1 , s 2 ) . 5

  6. Chen cones and multiple zeta values ◮ A Chen cone of dimension k is a cone C k ,σ := � e σ ( 1 ) , e σ ( 1 ) + e σ ( 2 ) , · · · , e σ ( 1 ) + · · · + e σ ( k ) � , where σ ∈ S k . Let C k denote the standard Chen cone spanned by { e 1 , · · · , e k } . ◮ Then ζ ( C k ,σ ; s 1 , · · · , s k ) = ζ ( s σ ( 1 ) , · · · , s σ ( k ) ) , ζ ( C k , id ; s 1 , · · · , s k ) = ζ ( s 1 , · · · , s k ) . ◮ The stuffle product of two MZVs ζ ( r 1 , · · · , r k ) and ζ ( s 1 , · · · , s ℓ ) is recovered by the subdivision of the cone C k × C ℓ (direct product) into Chen cones. ◮ For example, the open cone subdivision relation ζ ( � e 1 , e 2 � o ; ( s 1 , s 2 )) = ζ ( � e 1 , e 1 + e 2 � o ; ( s 1 , s 2 )) + ζ ( � e 1 + e 2 , e 2 � o ; ( s 1 , s 2 ) + ζ ( � e 1 + e 2 � o ; ( s 1 , s 2 ) gives the stuffle relation ζ ( s 1 ) ζ ( s 2 ) = ζ ( s 1 , s 2 ) + ζ ( s 2 , s 1 ) + ζ ( s 1 + s 2 ) . 6

  7. Multiple zeta values ◮ The multiple zeta value algebra is MZV := Q { ζ ( s 1 , · · · , s k ) | s i ≥ 1 , s 1 ≥ 1 } . ◮ The quasi-shuffle algebra H ∗ has the underlying vector space Q � z s | s ≥ 1 � with the quasi-shuffle product. It contains the subalgebra   � H ∗  ⊆ H ∗ . 0 := Q . 1 ⊕ Q z s 1 · · · z s k s 1 ≥ 2 The stuffle relation of MZVs is encoded in the algebra homomorphism ζ ∗ : H ∗ 0 − → MZV , z s 1 · · · z s k �→ ζ ( s 1 , · · · , s k ) . 7

  8. � � � Double shuffle relation ◮ The shuffle algebra H X has the underlying vector space Q � x 0 , x 1 � equipped with the shuffle product of words. It contains the subalgebra � H X x 0 H X x 1 . 0 := Q . 1 The shuffle relation of the MZVs is encoded in the algebra homomorphism ζ X : H X x s 1 − 1 x 1 · · · x s k − 1 0 → MZV , x 1 �→ ζ ( s 1 , · · · , s k ) . 0 0 ◮ There is a natural bijection of abelian groups (but not algebras) 1 ↔ 1 , x s 1 − 1 x 1 · · · x s k − 1 η : H X 0 → H ∗ x 1 ↔ z s 1 · · · z s k . 0 , 0 0 ◮ Then the fact that MZVs can be multiplied in two ways is reflected by η H ∗ H X 0 0 ζ ∗ ζ X MZV Double shuffle relation ζ ∗ � w 1 ∗ w 2 − η ( η − 1 ( w 1 ) X η − 1 ( w 2 )) � w 1 , w 2 ∈ H ∗ , 0 . 8

  9. Linearly constrained zeta values (LCZ) ◮ Let � v 1 , · · · , v k � be a smooth close cone with ita (unique) primitive generating set. ◮ For s 1 , · · · , s k ≥ 1, called the formal expression [ v 1 ] s 1 · · · [ v k ] s k a decorated smooth cone. ◮ Define the linearly constrained zeta value (LZV) ζ c ([ v 1 ] s 1 · · · [ v k ] s k ) ∞ ∞ 1 � � := · · · ( a 11 m 1 + · · · + a 1 r m r ) s 1 · · · ( a k 1 m 1 + · · · + a kr m r ) s k m 1 = 1 m r = 1 if the sum is convergent, where v i = � r j = 1 a ij e j , 1 ≤ i ≤ k . When [ v 1 ] · · · [ v k ] is a Chen cone [ e 1 ] · · · [ e 1 + · · · + e k ] , then we have ζ c ([ v 1 ] s 1 · · · [ v k ] s k ) = ζ ( s 1 , · · · , s k ) . 9

  10. Subdivision of decorated closed cones ◮ Let {� v i 1 , · · · , v ik �} i be a smooth subdivision of the smooth cone � v 1 , · · · , v k � . Call � i [ v i 1 ] · · · [ v ik ] an algebraic subdivision of [ v 1 ] · · · [ v k ] . ◮ Let [ v 1 ] s 1 · · · [ v k ] s k be a decorated smooth closed cone. j s j ( e i , v j )[ v 1 ] s 1 · · · [ v j ] s j + 1 · · · [ v k ] s k . For ◮ Define δ e i ([ v 1 ] s 1 · · · [ v k ] s k ) = � u = � i c i e i , define δ u = � i c i δ e i . Then [ v 1 ] s 1 · · · [ v k ] s k = ( s 1 − 1 )! ··· ( s k − 1 )! δ s 1 − 1 · · · δ s k − 1 1 ([ v i 1 ] · · · [ v ik ]) . v ∗ v ∗ 1 k ◮ Call 1 � ( s 1 − 1 )! · · · ( s k − 1 )! δ s 1 − 1 · · · δ s k − 1 ([ v i 1 ] · · · [ v ik ]) v ∗ v ∗ 1 k i an algebraic subdivision of [ v 1 ] s 1 · · · [ v k ] s k . Here v ∗ 1 , · · · , v ∗ k is a dual basis of v 1 , · · · , v k . ◮ Let D = � i a i D i be an algebraic subdivision of a decorated smooth cone D . Then � ζ c ( D ) = a i ζ c ( D i ) . i ◮ This generalizes the shuffle relation of MZVs. 10

  11. Relating open and closed subdivisions ◮ Let GL r ( Z ) denote the set of r × r unimodular matrices. Let s := ( s 1 , . . . , s r ) ∈ Z r M ∈ GL r ( Z ) and � ≥ 0 . Let v 1 , · · · , v r and u 1 , · · · , u r be the row and column vectors of M . The (decorated) cone pair associated with M and � s is the pair ( C , D ) consisting of the s = ( � u 1 , · · · , u r � o ,� decorated open cone C := C M ,� s ) and the s = [ v 1 ] s 1 · · · [ v r ] s r . We call the pair decorated closed cone D := D M ,� convergent if the corresponding ζ -values ζ 0 ( C ) and ζ c ( D ) converge. ◮ Let DTP denote the set of cone pairs ( C M ,� s , D M ,� s ) where M ∈ O ( Z ) s ∈ Z r and � ≥ 0 . Let p o : Q DTP → Q DC and p c : Q DTP → Q DMC denote the natural projections. ◮ For any cone pair ( C , D ) ∈ DTP , we have ζ o ( C ) = ζ c ( D ) , if either side makes sense. 11

  12. Double subdivision relation ◮ Let ( C , D ) be a convergent cone pair. Let { C i } i be an open subdivision of the decorated open cone C and let � j c j D j be a subdivision of the decorated closed cone D . Also let D T j ∈ DC be the transpose cone of D j , that is, ( D T j , D j ) is a cone pair. Then � � c j D T C i − (1) j i j lies in the kernel of ζ o . It is called a double subdivision relation. ◮ For any not necessarily convergent cone pair ( C , D ) , let { C i } be a j a j D T subdivision of C and � j a j D j a subdivision of D . If � i C i − � j is in Q DC , then it is called an extended double subdivision relation. ◮ Hunch. The kernel of ζ o is the subspace I EDS of Q DC generated by the extended double subdivision relations. 12

  13. � � �� �� � � � � �� � � � � � � � � � � � � Double subdivision relation ◮ po pc � Q DMC c Q DOC 0 Q DTP 0 0 � � T Q DCH o Q DCH c 0 0 η H X H ∗ 0 0 ζ X ζ ∗ ζ o ζ c Q MZV Q OCMZV 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend