projection and presolve in mosek exponential and power
play

Projection and presolve in MOSEK: exponential and power cones ISMP - PowerPoint PPT Presentation

Projection and presolve in MOSEK: exponential and power cones ISMP 2018 Henrik A. Friberg www.mosek.com New cones in MOSEK Friberg, Henrik A. (2017). Power cones in second-order cone form and dual recovery . SIAM Conference on


  1. Projection and presolve in MOSEK: exponential and power cones ISMP 2018 Henrik A. Friberg www.mosek.com

  2. ❼ ❼ ❼ New cones in MOSEK Friberg, Henrik A. (2017). Power cones in second-order cone form and dual recovery . SIAM Conference on Optimization. www.mosek.com/resources/presentations. For rational numbers α 1 , . . . , α k ≥ 0: ≥ � z � e T α 2 · · · x α k K pow( α ) = { x α 1 1 x α 2 2 , x 1 , . . . x k ≥ 0 } k = P ( L ∩ Q 1 × Q 2 × · · · ) .

  3. ❼ ❼ ❼ New cones in MOSEK Friberg, Henrik A. (2017). Power cones in second-order cone form and dual recovery . SIAM Conference on Optimization. www.mosek.com/resources/presentations. For rational numbers α 1 , . . . , α k ≥ 0: ≥ � z � e T α 2 · · · x α k K pow( α ) = { x α 1 1 x α 2 2 , x 1 , . . . x k ≥ 0 } k = P ( L ∩ Q 1 × Q 2 × · · · ) . �

  4. New cones in MOSEK Friberg, Henrik A. (2017). Power cones in second-order cone form and dual recovery . SIAM Conference on Optimization. www.mosek.com/resources/presentations. For rational numbers α 1 , . . . , α k ≥ 0: ≥ � z � e T α 2 · · · x α k K pow( α ) = { x α 1 1 x α 2 2 , x 1 , . . . x k ≥ 0 } k = P ( L ∩ Q 1 × Q 2 × · · · ) . � In MOSEK 9: 1 x 1 − α ❼ K pow( α, 1 − α ) = { x α ≥ � z � 2 , x 1 , x 2 ≥ 0 } , parametrized by 2 a real number 0 < α < 1. ❼ K exp = cl { t ≥ s exp( r / s ) , s > 0 } . ❼ The corresponding dual cones K ∗ pow( α, 1 − α ) and K ∗ exp .

  5. Exponential cone examples 1 Exponential. t ≥ exp( x ) ⇐ ⇒ ( t , 1 , x ) ∈ K exp .

  6. Exponential cone examples 1 Exponential. t ≥ a x ⇐ ⇒ ( t , 1 , x log( a )) ∈ K exp .

  7. Exponential cone examples 1 Exponential.   n t ≥ a x 1 1 a x 2 2 · · · a x n �  ∈ K exp . n ⇐ ⇒  t , 1 , x j log( a j ) j =1

  8. Exponential cone examples 2 { t ≤ log( x ) } = { ( x , 1 , t ) ∈ K exp } . 3 { t ≥ x log( x / y ) } = { ( y , x , − t ) ∈ K exp } . � (1 � t ≥ (log x ) 2 , 0 < x ≤ 1 2 , t , u ) ∈ Q 3 � � r , ( x , 1 , u ) ∈ K exp , x ≤ 1 = . 4 5 { t ≤ log log x , x > 1 } = { ( u , 1 , t ) ∈ K exp , ( x , 1 , u ) ∈ K exp } . √ � � t ≥ (log x ) − 1 , x > 1 2) ∈ Q 3 � � = ( u , t , r , ( x , 1 , u ) ∈ K exp . 6 � (1 � � � 2 , u , t ) ∈ Q 3 � t ≤ r , ( x , 1 , u ) ∈ K exp log x , x > 1 = . 7 √ � � � � � 2 t ) ∈ Q 3 t ≤ r , ( x , 1 , u ) ∈ K exp x log x , x > 1 = ( x , u , . 8 � (1 � 2 , u , x ) ∈ Q 3 9 { t ≥ x exp( x ) , x ≥ 0 } = r , ( t , x , u ) ∈ K exp .

  9. Exponential cone examples 10 Log-sum-exponential. log(e x 1 + . . . + e x n ) ≥ t

  10. Exponential cone examples 10 Log-sum-exponential. log(e x 1 + . . . + e x n ) ≥ t e x 1 + . . . + e x n e t ≥ �

  11. Exponential cone examples 10 Log-sum-exponential. log(e x 1 + . . . + e x n ) ≥ t e x 1 + . . . + e x n e t ≥ � e x 1 − t + . . . + e x n − t ≥ 1 �

  12. Exponential cone examples 10 Log-sum-exponential. log(e x 1 + . . . + e x n ) ≥ t e x 1 + . . . + e x n e t ≥ � e x 1 − t + . . . + e x n − t ≥ 1 � Geometric programming in conic form: inf t x + y 2 z inf log(e u + e 2 v + w ) ≤ t , 0 . 1 √ x + 2 y − 1 ≤ 1 , s.t. ↔ s.t. log(e 0 . 5 u +log(0 . 1) + e − v +log(2) ) ≤ 0 , z − 1 + yx − 2 ≤ 1 , log(e − w + e v − 2 u ) ≤ 0 , where ( x , y , z ) = (e u , e v , e w ).

  13. More information Usage ❼ MOSEK Modeling Cookbook. ❼ Fri, 15:15. Micha� l Adamaszek: Exponential cone in MOSEK: overview and applications . Implementation details ❼ Wed, 8:30. Joachim Dahl: Extending MOSEK with exponential cones . Details for all of MOSEK 9 ❼ Wed, 15:15. Erling Andersen: MOSEK version 9 .

  14. The curious case of error measuring ✞ ☎ Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 7.4390660847e-02 nrm: 1e+00 Viol. con: 6e-09 var: 0e+00 cones: 4e-09 Dual. obj: 7.4390675795e-02 nrm: 3e-01 Viol. con: 1e-19 var: 8e-09 cones: 0e+00 ✝ ✆

  15. ❼ ❼ ❼ ❼ The curious case of error measuring Error of x = (0 , 10 8 , 1) in constraint 2 x 1 x 2 ≥ | x 3 | ?

  16. ❼ ❼ ❼ The curious case of error measuring Error of x = (0 , 10 8 , 1) in constraint 2 x 1 x 2 ≥ | x 3 | ? ❼ f ( x ) = | x 3 | − 2 x 1 x 2 ≤ 0. Error [ f ( x )] + = 1.

  17. ❼ The curious case of error measuring Error of x = (0 , 10 8 , 1) in constraint 2 x 1 x 2 ≥ | x 3 | ? ❼ f ( x ) = | x 3 | − 2 x 1 x 2 ≤ 0. Error [ f ( x )] + = 1. ❼ f ( x ) = | x 3 | / x 1 − 2 x 2 ≤ 0. Error [ f ( x )] + = Inf . ❼ f ( x ) = | x 3 | / x 2 − 2 x 1 ≤ 0. Error [ f ( x )] + = 1 e − 8.

  18. The curious case of error measuring Error of x = (0 , 10 8 , 1) in constraint 2 x 1 x 2 ≥ | x 3 | ? ❼ f ( x ) = | x 3 | − 2 x 1 x 2 ≤ 0. Error [ f ( x )] + = 1. ❼ f ( x ) = | x 3 | / x 1 − 2 x 2 ≤ 0. Error [ f ( x )] + = Inf . ❼ f ( x ) = | x 3 | / x 2 − 2 x 1 ≤ 0. Error [ f ( x )] + = 1 e − 8. ❼ dist ( x , Q 3 r ) = 5 e − 9.

  19. The curious case of error measuring Error of x = (0 , 10 8 , 1) in constraint 2 x 1 x 2 ≥ | x 3 | ? ❼ f ( x ) = | x 3 | − 2 x 1 x 2 ≤ 0. Error [ f ( x )] + = 1. ❼ f ( x ) = | x 3 | / x 1 − 2 x 2 ≤ 0. Error [ f ( x )] + = Inf . ❼ f ( x ) = | x 3 | / x 2 − 2 x 1 ≤ 0. Error [ f ( x )] + = 1 e − 8. ❼ dist ( x , Q 3 r ) = 5 e − 9. The power and exponential cones are also representation sensitive: x 0 . 3333 x 0 . 6666 x 1 1 x 2 2 ≥ || z || 3 ≥ || z || 2 ⇐ ⇒ 1 2 2 y ≥ exp ( x ) ⇐ ⇒ x ≤ log ( y ) This sensitivity is a well-known caveat of forward error. Projection is an example of backwards error.

  20. The curious case of error measuring ✞ ☎ Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 7.4390660847e-02 nrm: 1e+00 Viol. con: 6e-09 var: 0e+00 cones: 4e-09 Dual. obj: 7.4390675795e-02 nrm: 3e-01 Viol. con: 1e-19 var: 8e-09 cones: 0e+00 ✝ ✆ Variable domains are measured with backwards error: � dist ( x 1 , K 1 ) , dist ( x 2 , K 2 ) , . . . � ∞ .

  21. In need of projections! dist (˜ x , K ) = min � x − ˜ x � x ∈K � � ˜ = arg min � x − ˜ x � x K x ∈K What is the hype about? ❼ Set membership conditions ( x ∈ K ). ❼ Representation-free error measures. ❼ Maximal separating hyperplanes. ❼ First-order methods for feasible point searches (e.g., looking for specific properties). ...basically a useful low cost operation (time+memory).

  22. Projection theory Moreau’s decomposition theorem All matrices/vectors are uniquely decomposable as v 0 = [ v 0 ] K + [ v 0 ] K ◦ , for all nonempty, closed, convex cones K (and in any norm). Trivial example: All scalars are uniquely decomposable as v 0 = [ v 0 ] + + [ v 0 ] − , where [ • ] + = [ • ] R + = max(0 , • ), and [ • ] − = [ • ] R − = min(0 , • ).

  23. Projection theory Moreau’s decomposition theorem All matrices/vectors are uniquely decomposable as v 0 = [ v 0 ] K + [ v 0 ] K ◦ , for all nonempty, closed, convex cones K (and in any norm). Dual cone projection: � � � � [ v 0 ] K ∗ = − − v 0 −K ∗ = − − v 0 K ◦ .

  24. Projection theory Moreau’s decomposition theorem All matrices/vectors are uniquely decomposable as v 0 = [ v 0 ] K + [ v 0 ] K ◦ , for all nonempty, closed, convex cones K (and in any norm). Reflection (intrepid projection for obtuse cones): Ref K ( v 0 ) = [ v 0 ] K − [ v 0 ] K ◦ .

  25. Separation For nonempty closed convex cones, K = { x | a T x ≤ 0 , ∀ a ∈ K ◦ } . x �∈ K are points of { a ∈ K ◦ | a T ˜ ❼ Separators of ˆ x > 0 } .

  26. Separation For nonempty closed convex cones, K = { x | a T x ≤ 0 , ∀ a ∈ K ◦ } . x �∈ K are points of { a ∈ K ◦ | a T ˜ ❼ Separators of ˆ x > 0 } . Gradient separator For positively homogeneous convex functions, the cone K = { x | f ( x ) ≤ 0 } , has separator a = ∇ f (ˆ x ) for ˆ x �∈ K . Lubin, Miles (2017). “Mixed-integer convex optimization: outer approximation algorithms and modeling power”. PhD thesis. Massachusetts Institute of Technology.

  27. Separation For nonempty closed convex cones, K = { x | a T x ≤ 0 , ∀ a ∈ K ◦ } . x �∈ K are points of { a ∈ K ◦ | a T ˜ ❼ Separators of ˆ x > 0 } . a ∈K ◦ , � a � 2 ≤ 1 a T ˆ ❼ The maximal separator solves max x .

  28. Separation For nonempty closed convex cones, K = { x | a T x ≤ 0 , ∀ a ∈ K ◦ } . x �∈ K are points of { a ∈ K ◦ | a T ˜ ❼ Separators of ˆ x > 0 } . a ∈K ◦ , � a � 2 ≤ 1 a T ˆ ❼ The maximal separator solves max x . ❼ Its dual problem is min x ∈K � x − ˆ x � 2 . ❼ Maximal separator is dual solution to projection problem.

  29. Projection theory Moreau’s decomposition theorem All matrices/vectors are uniquely decomposable as v 0 = [ v 0 ] K + [ v 0 ] K ◦ , for all nonempty, closed, convex cones K (and in any norm). Maximal separation: [ v 0 ] K ◦ maxsep K ( v 0 ) = � [ v 0 ] K ◦ � 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend