regge trajectories of strange resonances and the non
play

Regge trajectories of strange resonances and the non-ordinary nature - PowerPoint PPT Presentation

Regge trajectories of strange resonances and the non-ordinary nature of the A.Rodas, J.R.Pel aez Universidad Complutense de Madrid September 8, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


  1. Regge trajectories of strange resonances and the non-ordinary nature of the κ A.Rodas, J.R.Pel´ aez Universidad Complutense de Madrid September 8, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 1 / 28

  2. Index Motivation and Introduction 1 Ordinary resonances 2 Non-ordinary resonances 3 Summary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 1 / 28

  3. Motivation Interest in identification of non-ordinary Quark Model states. Easy if quantum numbers are not qqbar Not so easy for cryptoexotics like light scalars. Particularly the σ and κ -mesons existence and nature has been debated for several decades. Hard to tell what a non-ordinary resonance is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 2 / 28

  4. Regge Theory Figure: Anisovich-Anisovich-Sarantsev-PhysRevD.62.05150 For ordinary resonances: All hadrons are classified in linear ( J , M 2 ) trayectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 3 / 28

  5. Regge Theory σ and κ -mesons are not included in these plots. The σ -meson cannot be included because it has no possible partner in this classification. The κ resonance is not even mentioned as it still needs confirmation according to the PDG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 4 / 28

  6. Regge poles The contribution of a single pole to a partial wave is β ( s ) β ( s ) f ( J , s ) = f background + J − α ( s ) ≈ (1) J − α ( s ) α ( s ) is the position of the pole, whereas β ( s ) is the residue. Unitarity condition on the real axis implies Im α ( s ) = ρ ( s ) β ( s ) (2) The analytical properties of β ( s ) implies s α ( s ) ˆ β ( s ) = Γ( α ( s ) + 3 / 2) γ ( s ) (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 5 / 28

  7. The trajectory and residue should satisfy these integral equations: ∫ ∞ Re α ( s ) = α 0 + α ′ s + s 4 m 2 ds ′ Im α ( s ′ ) s ′ ( s ′ − s ) , (4) π PV ( s α 0 + α ′ s Im α ( s ) = ρ ( s ) b 0 ˆ 2 ) | exp − α ′ s [1 − log( α ′ s 0 )] | Γ( α ( s ) + 3 ∫ ∞ ) ds ′ Im α ( s ′ ) log ˆ s α ( s ′ ) + 3 ( ) s ′ + arg Γ + s ˆ 2 , (5) π PV s ′ ( s ′ − s ) 4 m 2 ( s α 0 + α ′ s b 0 ˆ − α ′ s [1 − log( α ′ s 0 )] β ( s ) = 2 ) exp Γ( α ( s ) + 3 ∫ ∞ ds ′ Im α ( s ′ ) log ˆ α ( s ′ ) + 3 ) s ( ) s ′ + arg Γ + s ˆ 2 , (6) s ′ ( s ′ − s ) π 4 m 2 Constants fixed by forcing the amplitude to have THE POLE AND RESIDUE OF THE DESIRED RESONANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 6 / 28

  8. ρ (770) resonance Figure: Garc´ ıa-Mart´ ın et al.-Phys.Rev. D83 (2011) 074004 Parameters obtained using a dispersive formalism (Roy-Steiner equations). M K ∗ = 763 ± 2 MeV and Γ K ∗ = 146 ± 2 MeV, with | g | = 6 . 01 ± 0 . 07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 7 / 28

  9. ρ (770) resonance Figure: Carrasco et al.-Phys.Lett. B749 (2015) 399-406 We (black) recover a fair representation of the partial wave, in agreement with the GKPY amplitude (red) Neglecting the background vs. Regge pole gives a 10-15% error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 8 / 28

  10. ρ (770) resonance Figure: Carrasco et al.-Phys.Lett. B749 (2015) 399-406 It is almost a linear regge trajectory. This is a prediction for the whole tower of ρ (770) Regge partners: ρ (1690) , ρ (2350) ... Intercept α 0 = 0 . 52 ± 0 . 002, and Slope α ′ = 0 . 902 ± 0 . 004GeV − 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 9 / 28

  11. K ∗ (892) resonance Figure: Pel´ aez-Rodas-Phys.Rev. D93 (2016) no.7, 074025 We use as input the parameters obtained using a dispersive formalism. M K ∗ = 892 ± 1 MeV and Γ K ∗ = 58 ± 2 MeV, with | g | = 6 . 02 ± 0 . 06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 10 / 28

  12. K ∗ (892) resonance Figure: Carrasco et al.-Phys.Lett. B749 (2015) 399-406 It is almost a linear regge trajectory. It is a prediction, not a fit. Consistent with the fits in the literature. Intercept α 0 = 0 . 32 ± 0 . 01, and Slope α ′ = 0 . 83 ± 0 . 01GeV − 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 11 / 28

  13. K 1 (1400) resonance Very elastic to K ∗ (892) π with BR = 94 ± 6%. The K 1 (1400) is a clear resonance, we use a Breit-Wigner description. The result obtained with our method is compatible near the pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 12 / 28

  14. K 1 (1400) resonance It is almost linear. There is no partner, but we can compare our trajectory with other fits in the same energy region. − 0 . 03 , and Slope α ′ = 0 . 90 ± 0 . 01GeV − 2 . Intercept α 0 = − 0 . 72 +0 . 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 13 / 28

  15. K ∗ 0 (1430) resonance Very elastic to K π with BR = 93 ± 10%. There are 2 resonances in this region, but we neglect the contribution of the κ for the K ∗ 0 (1430) calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 14 / 28

  16. K ∗ 0 (1430) resonance Solution obtained with the method. Many models predict quark-antiquark with sizable mixing to K π . The result obtained with our method is compatible near the pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 15 / 28

  17. K ∗ 0 (1430) resonance It is almost linear, the method does not describe properly the scattering lengths (there are 2 poles). − 0 . 15 , and Slope α ′ = 0 . 81 ± 0 . 1GeV − 2 . Intercept α 0 = − 1 . 15 +0 . 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 16 / 28

  18. Non-ordinary resonances For non-ordinary resonances one expects the regge trajectories to be non-linear. We are interested in the σ and the κ , considered as non-usual resonances. Our method cannot predict the compositeness of a resonance, but it shows when a resonance its a non-ordinary candidate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 17 / 28

  19. σ/ f 0 (500) resonance Figure: Garc´ ıa-Mart´ ın et al.-Phys.Rev. D83 (2011) 074004 Candidate for non-ordinary behavior. Huge width, there is no resonant behavior in the partial wave. The parameters of the resonance are obtained using Roy-Steiner equations. M σ = 457 +14 − 15 MeV, Γ σ = 558 +22 − 14 MeV, | g | = 3 . 59 +0 . 11 − 0 . 13 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 18 / 28

  20. σ/ f 0 (500) resonance Fair agreement in the resonant region. If we impose a linear regge trajectory the result spoils the data description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 19 / 28

  21. σ/ f 0 (500) resonance Figure: Londergan et al.-Phys.Lett. B729 (2014) 9-14 We compare the results of the σ with the usual linear regge trajectory of the ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 20 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend