refined geometric transition qq characters
play

Refined geometric transition qq-characters & Hironori Mori - PowerPoint PPT Presentation

Refined geometric transition qq-characters & Hironori Mori (YITP, Kyoto U.) HM, Y. Sugimoto (Osaka U.), Phys. Rev. D95 (2017) 026001, arXiv:1608.02849 T. Kimura (Keio U.), HM, Y. Sugimoto (Osaka U.), arXiv:1705.03467 2017/08/08, YITP


  1. Refined geometric transition qq-characters & Hironori Mori (YITP, Kyoto U.) HM, Y. Sugimoto (Osaka U.), Phys. Rev. D95 (2017) 026001, arXiv:1608.02849 T. Kimura (Keio U.), HM, Y. Sugimoto (Osaka U.), arXiv:1705.03467 2017/08/08, YITP Workshop “Strings and Fields 2017” @ YITP

  2. Motivation: understand the link of quantum theories Quantum integrable system TBA, spin chain, lattice model, … Quantum fields SUSY, duality, … Quantum geometry Quantum algebra quantum spectral curve, … DIM algebra, , … W q,t ( g ) ⇧ qq-character

  3. What we found Quantum integrable system TBA, spin chain, lattice model, … qq-character can be derived geometrically Quantum fields from the topological string theory SUSY, duality, … Quantum geometry Quantum algebra quantum spectral curve, … DIM algebra, , … W q,t ( g ) ⇧ qq-character

  4. Contents 1. Y-operator & qq-character 2. Refined geometric transition 3. qq-character from refined geometric transition 4. Summary

  5. Y-operator & qq-character • SW curve in 4d [Seiberg-Witten 1994] Σ = { ( x, y ) ∈ C × C ∗ | H ( x, y ) = 0 } λ = ∂ F � � SW di ff erential : λ = x d(log y ) λ = a i , ∂ a i B i A i ex) SU(N) gauge theory in 4d H ( x, y ) = y + 1 1 ⟹ y ( x ) + y ( x ) = T N ( x ) y − T N ( x ) : a degree-N polynomial T N ( x )

  6. Y-operator & qq-character 1 • SW curve in 4d [Seiberg-Witten 1994] y ( x ) = T N ( x ) for G = SU(N) y ( x ) + • Key: Ω -deformation ( � 1 , � 2 ) - NS limit → quantization [Nekrasov-Shatashvili 2009] [Nekrasov-Pestun-Shatashvili 2013] ( � 1 , 0) � = � W � SW di ff erential : λ = x d(log y ) = � 1 Z � a i B i 1 y ( x ) + y ( x − � 1 ) = T N ( x ; � 1 ) ⟹ q-character � � ∞ generating function of � O n � � y ( x ) = � Y ( x ) � = exp � x − n chiral ring operators n n =1 Y-operator “building block”

  7. Y-operator & qq-character 1 • SW curve in 4d [Seiberg-Witten 1994] y ( x ) = T N ( x ) for G = SU(N) y ( x ) + • Key: Ω -deformation ( � 1 , � 2 ) - NS limit → quantization [Nekrasov-Shatashvili 2009] [Nekrasov-Pestun-Shatashvili 2013] ( � 1 , 0) - generic → “double” quantization [Nekrasov 2015] ( � 1 , � 2 ) � = � 1 + � 2 � � 1 Y ( x ) + = T N ( x ; � 1 , � 2 ) ⟹ Y ( x − � ) qq-character • 5d/6d uplift [Kimura-Pestun 2015, 2016] q = q 1 q 2 , ( q 1 , q 2 ) = ( e � 1 , e � 2 ) � � 1 Y ( x ) + = T N ( x ; q 1 , q 2 ) Y ( q − 1 x )

  8. Y-operator & qq-character • : building block for qq-character, cf. [Kimura 2016], Kimura’s talk tomorrow, Zhu’s poster Y ( x ) → Rational [Nekerasov-Pestun 2012] [Nekrasov 2015] R 4 � 1 , � 2 � 1 , � 2 × S 1 → Trigonometric [Nekerasov-Pestun-Shatashvili 2013] [Kimura-Pestun 2015] R 4 → R 4 � 1 , � 2 × T 2 Elliptic [Kimura-Pestun 2016] � � N k 1 q j − 1 q j θ 1 ( q i − 1 θ 1 ( q i Q k, α /x ) 2 Q k, α /x ) � � 2 1 Y k,µ ( x ) = � θ 1 ( Q k, α /x ) � q j − 1 θ 1 ( q i − 1 1 q j θ 1 ( q i Q k, α /x ) 2 Q k, α /x ) 1 2 α =1 ( i,j ) ∈ µ k, α k + 1 k − 1 k

  9. Contents 1. Y-operator & qq-character 2. Refined geometric transition 3. qq-character from refined geometric transition 4. Summary

  10. ⇒ Refined topological string theory NS5 dictionary ⟺ D5 Lagrangian brane extra D-brane Calabi-Yau Fivebrane web Refined topological vertex ⟷ Nekrasov partition function Z closed Z inst expect Insertion of Lagrangian brane ⟷ Y-operator qq-character Y ( x ) χ � ( q 1 , q 2 ) Z open ⟹ We would like to evaluate to construct Y-operator. Z open

  11. Topological vertex closed (easy) open (di ffi cult) unrefined C µ νρ ( q ) s µ ( x ) : Schur polynomial ( � 1 = − � 2 ) [Aganagic-Klemm-Marinõ-Vafa 2003] ??? refined C µ νρ ( q 1 , q 2 ) ( � 1 � = � 2 ) [Awata-Kanno 2005] [HM-Sugimoto in progress] [Iqbal-Kozçaz-Vafa 2007] cf. [Kameyama-Nawata 2017] Geometric transition (open/closed duality) [Gopakumar-Vafa 1998]

  12. Refined geometric transition • Geometric transition on the web diagram k + 1 k + 1 k k k − 1 k − 1 ⟺ Q k +1 Q k Lagrangian brane Q k − 1 = � � Z closed ˜ Z closed Z open µ µ µ µ µ tuning Kähler parameters Q �

  13. Refined geometric transition • Our proposal [HM-Sugimoto 2016] [Kimura-HM-Sugimoto 2017] k + 1 k + 1 k k k − 1 k − 1 ⟺ Q k +1 Q k Lagrangian brane Q k − 1 Q k = q m 1 q n 1 2 Q � <k = Q � >k = √ q 1 q 2 √ q 1 q 2 √ q 1 q 2 ( in the unrefined limit) m, n ∈ Z , q 1 q 2 = 1 - To remove unrelated factors to a Lag. brane attached to the -th line. k - To reproduce the closed string amplitude if no Lag. brane appears. - To reproduce also the open string contribution in the unrefined limit.

  14. Contents 1. Y-operator & qq-character 2. Refined geometric transition 3. qq-character from refined geometric transition 4. Summary

  15. ⇒ qq-character from refined geometric transition NS5 6d theory on R 4 � 1 , � 2 × T 2 ⤳ G = U(1) 1 D5 Γ = A 1 Refined topological vertex ⟶ 6d Nekrasov partition function Z closed Z inst [Kimura-HM-Sugimoto 2017] Refined geometric transition ⟶ Y-operator qq-character Y ( x ) χ � ( q 1 , q 2 ) Z open

  16. qq-character from refined geometric transition • How to construct Y-operator → Geometric transition twice with specific parameter tuning ⟺ ⟺ ˜ Q 2 Q 2 ˜ Q 1 Q 1 q − 1 q 1 1 1 ˜ ˜ 1 Q 2 = , Q 2 = Q 1 = , Q 1 = √ q 1 q 2 √ q 1 q 2 √ q 1 q 2 √ q 1 q 2 ⟹ ⟹ � � � ˜ Z closed Z closed ˇ Z open Z closed Z open Z open µ µ µ µ µ µ µ µ µ

  17. qq-character from refined geometric transition • How to construct Y-operator → Geometric transition twice with specific parameter tuning q 1 1 ˜ Q 2 = , Q 2 = √ q 1 q 2 √ q 1 q 2 ⟺ q − 1 1 ˜ 1 Q 1 = , Q 1 = √ q 1 q 2 √ q 1 q 2 ˜ Q 2 Q 2 � � � Z closed Z open Z open Y ( x ) × θ 1 ( Q x ) = µ µ µ by hand ˜ µ Q 1 Q 1 θ 1 ( q i − 1 q j 2 Q x ) � Z open 1 = the number of µ θ 1 ( x ) 1 q j θ 1 ( q i 2 Q x ) ( i,j ) ∈ µ di ff erence of q 1 , q 2 1 q j − 1 θ 1 ( q i Q x ) are consistent with Y-operator � Z open 2 = µ q j − 1 θ 1 ( q i − 1 Q x ) 1 2 ( i,j ) ∈ µ

  18. qq-character from refined geometric transition • How to construct Y-operator → Geometric transition twice with specific parameter tuning q 1 1 ˜ Q 2 = , Q 2 = √ q 1 q 2 √ q 1 q 2 ⟺ q − 1 1 ˜ 1 Q 1 = , Q 1 = √ q 1 q 2 √ q 1 q 2 � � Y ( x ) ˜ Q 2 Q 2 ˜ Q 1 q 1 1 ˜ Q 2 = , Q 2 = Q 1 √ q 1 q 2 √ q 1 q 2 ⟺ q − 1 1 ˜ 1 Q 1 = , Q 1 = √ q 1 q 2 √ q 1 q 2 � � 1 Y ( q − 1 x )

  19. qq-character from refined geometric transition • How to realize qq-character : gauge coupling q : matter contribution P ( x ) � � 1 � � � � Y ( x ) + q P ( x ) = T ( x ; q 1 , q 2 ) Y ( q − 1 x ) • Γ = A 1 ⃝ ⟶ Γ = A n ⎯ ⃝ ⎯ ⃝ ⎯ ⃝ ⎯ • fundamental rep. of Γ ⟶ higher rank rep. of Γ

  20. Summary 1. Refined geometric transition → propose new prescription for the refined version of geometric transition 2. qq-character → provide how to construct Y-operators via refined geometric transition � � Y ( x ) ⟶ Outlooks • Relation to supergroup Chern-Simons theory? ⟶ brane, ⟶ anti-brane [Vafa 2001] [Mikhaylov-Witten 2014] • Extension to DE-type quiver, cf. [Hayashi-Ohmori 2017] & Zhu’s poster • Towards quantum/elliptic integrable models

  21. Auxiliary part

  22. BPS/CFT correspondence [Nekrasov 2004] • Statement QFTs with 8 supercharges CFTs & Integrable systems ⟺ in 4d/5d/6d in 2d • Gauge/quiver duality Quiver gauge theory G : gauge group Γ : quiver shape AGT “dual” AGT W(G)-algebra W( Γ )-algebra ⇧ qq-character

  23. Y-operator & qq-character � � 1 • Why qq-“character”? Y ( x ) + = T N ( x ; q 1 , q 2 ) Y ( q − 1 x ) BPS/CFT ⟷ weight of A 1 y ⟺ N y + 1 ⟷ character for the fund. rep. of A 1 y = χ � G = SU(N) Γ = A 1 cf. q-character for finite dim. rep. of the quantum algebra [Frenkel-Reshetikhin 1998] • describes the “double” quantization of the SW geometry. • interpreted as a generating current of W-algebra. [Kimura-Pestun 2015, 2016] 1 The free field realization of & Y ( x ) Y ( x ) + Y ( q − 1 x ) =: T ( x ) � T n x − n ⇒ give the defining commutation relation of T ( x ) = T n n ∈ Z ⇒ quantum/elliptic deformed W-algebra.

  24. Y-operator & qq-character • What are Y- and T-operator in an associated Lie algebra? � � 1 Y ( x ) + = � T ( x ; q 1 , q 2 ) � Y ( q − 1 x ) Y ( x ) ⟷ weight of Γ T ( x ; q 1 , q 2 ) ⟷ generating current of W( Γ )-algebra � ex. 5d SU(2) ⟺ q-Virasoro algebra T n x − n T ( x ; q 1 , q 2 ) = n ∈ Z ∞ f k ( T n − k T m + k − T m − k T n + k ) − (1 − q 1 )(1 − q 2 ) � ( q n − q − n ) δ n + m, 0 [ T n , T m ] = − 1 − q k =1 � ∞ � ∞ (1 − q n 1 )(1 − q n x n 2 ) f k x k = exp � � 1 + q n n n =1 k =0

  25. k + 1 k k − 1 ⟺ Our proposal Q k Q k = q m 1 q n 1 2 Q � <k = Q � >k = √ q 1 q 2 √ q 1 q 2 √ q 1 q 2 + suitable shift of Kähler parameter by hand ⟺ [Dimofte-Gukov-Hollands 2010] [Taki 2010] Q k = q m 1 q n 1 1 2 Q � <k = Q � >k = √ q 1 q 2 √ q 1 q 2 √ q 1 q 2 The preferred direction does a ff ect the open string sector

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend