recursive optimal transport and fixed point iterations
play

Recursive Optimal Transport and Fixed-Point Iterations for - PowerPoint PPT Presentation

. . Recursive Optimal Transport and Fixed-Point Iterations for Nonexpansive Maps . . . . . Roberto Cominetti Universidad de Chile rccc@dii.uchile.cl OTAE Toronto September 2014 based on joint work with J.B. Baillon, M. Bravo,


  1. . . Recursive Optimal Transport and Fixed-Point Iterations for Nonexpansive Maps . . . . . Roberto Cominetti Universidad de Chile rccc@dii.uchile.cl OTAE – Toronto – September 2014 based on joint work with J.B. Baillon, M. Bravo, J. Soto, J. Vaisman

  2. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 T contraction — fixed point iteration x n +1 = Tx n ( BP ) R. Cominetti (Universidad de Chile) 2 / 23 Fixed-point iterations - nonexpansive maps

  3. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 T contraction — fixed point iteration x n +1 = Tx n ( BP ) ∥ x n +1 − x n ∥ = ∥ Tx n − x n ∥ ≤ ρ n ∥ Tx 0 − x 0 ∥ → 0 ⇓ convergence + error estimates + stopping rule R. Cominetti (Universidad de Chile) 2 / 23 Fixed-point iterations - nonexpansive maps

  4. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 T nonexpansive — Krasnoselskii-Mann iterates T : C → C non-expansive / C convex bounded in ( X , ∥ · ∥ ) x n +1 = (1 − α n +1 ) x n + α n +1 Tx n ( KM ) R. Cominetti (Universidad de Chile) 3 / 23 Fixed-point iterations - nonexpansive maps

  5. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 T nonexpansive — Krasnoselskii-Mann iterates T : C → C non-expansive / C convex bounded in ( X , ∥ · ∥ ) x n +1 = (1 − α n +1 ) x n + α n +1 Tx n ( KM ) algorithm for computing fixed points (e.g. T = Shapley value) also obtained after discretizing dx dt + [ I − T ]( x ) = 0 also in stochastic approximation R. Cominetti (Universidad de Chile) 3 / 23 Fixed-point iterations - nonexpansive maps

  6. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 T nonexpansive — Krasnoselskii-Mann iterates T : C → C non-expansive / C convex bounded in ( X , ∥ · ∥ ) x n +1 = (1 − α n +1 ) x n + α n +1 Tx n ( KM ) algorithm for computing fixed points (e.g. T = Shapley value) also obtained after discretizing dx dt + [ I − T ]( x ) = 0 also in stochastic approximation ∥ Tx n − x n ∥ → 0 ? Question: R. Cominetti (Universidad de Chile) 3 / 23 Fixed-point iterations - nonexpansive maps

  7. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 How is this useful? If ∥ Tx n − x n ∥ → 0 ⇒ all strong/weak cluster points are fixed points of T ⇒ existence: Fixed Point Theorem (Browder-G¨ ohde-Kirk’65) R. Cominetti (Universidad de Chile) 4 / 23 Fixed-point iterations - nonexpansive maps

  8. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 How is this useful? If ∥ Tx n − x n ∥ → 0 ⇒ all strong/weak cluster points are fixed points of T ⇒ existence: Fixed Point Theorem (Browder-G¨ ohde-Kirk’65) and since ∥ x n − ¯ x ∥ decreases for all ¯ x ∈ Fix T ⇒ x n converges strong/weak to a fixed point ⇒ convergence results of Krasnoselski’55, Shaefer’57, Browder-Petryshyn’67, Edelstein’70, Groetsch’72, Ishikawa’76, Edelstein-O’Brien’78, Reich’79... Kohlenbach’03 R. Cominetti (Universidad de Chile) 4 / 23 Fixed-point iterations - nonexpansive maps

  9. . . . . . . . . . Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Baillon-Bruck’s conjecture (1992) There exists a universal constant κ such that diam( C ) ∥ Tx n − x n ∥ ≤ κ ( BB ) √∑ n k =1 α k (1 − α k ) Remark: in continuous time ∥ Tx ( t ) − x ( t ) ∥ ≤ κ diam ( C ) √ t R. Cominetti (Universidad de Chile) 5 / 23 Fixed-point iterations - nonexpansive maps

  10. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Baillon-Bruck’s conjecture (1992) There exists a universal constant κ such that diam( C ) ∥ Tx n − x n ∥ ≤ κ ( BB ) √∑ n k =1 α k (1 − α k ) Remark: in continuous time ∥ Tx ( t ) − x ( t ) ∥ ≤ κ diam ( C ) √ t . Theorem (Baillon-Bruck’1996) . . . When α n ≡ α the bound holds with κ = 1 / √ π . . . . . . R. Cominetti (Universidad de Chile) 5 / 23 Fixed-point iterations - nonexpansive maps

  11. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Baillon-Bruck’s conjecture (1992) There exists a universal constant κ such that diam( C ) ∥ Tx n − x n ∥ ≤ κ ( BB ) √∑ n k =1 α k (1 − α k ) Remark: in continuous time ∥ Tx ( t ) − x ( t ) ∥ ≤ κ diam ( C ) √ t . Theorem (Baillon-Bruck’1996) . . . When α n ≡ α the bound holds with κ = 1 / √ π . . . . . . We prove it for general α n with κ = 1 / √ π ∼ 0 . 5642 Also an improved bound for affine maps with κ = 0 . 4688 We discuss the extent to which these bounds are sharp R. Cominetti (Universidad de Chile) 5 / 23 Fixed-point iterations - nonexpansive maps

  12. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Example: Right-shift on ℓ 1 ( N ) C = { p ∈ ℓ 1 ( N ) : p i ≥ 0 , ∑ ∞ i =0 p i = 1 } with diam( C ) = 2 T ( p 0 , p 1 , p 2 , . . . ) = (0 , p 0 , p 1 , p 2 , . . . ) is an isometry R. Cominetti (Universidad de Chile) 6 / 23 Fixed-point iterations - nonexpansive maps

  13. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Example: Right-shift on ℓ 1 ( N ) C = { p ∈ ℓ 1 ( N ) : p i ≥ 0 , ∑ ∞ i =0 p i = 1 } with diam( C ) = 2 T ( p 0 , p 1 , p 2 , . . . ) = (0 , p 0 , p 1 , p 2 , . . . ) is an isometry x 0 = (1 , 0 , 0 , 0 , . . . ) x 1 = (1 − α 1 , α 1 , 0 , 0 , . . . ) x 2 = ((1 − α 2 )(1 − α 1 ) , (1 − α 2 ) α 1 + α 2 (1 − α 1 ) , α 2 α 1 , 0 , . . . ) x 3 = . . . R. Cominetti (Universidad de Chile) 6 / 23 Fixed-point iterations - nonexpansive maps

  14. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Example: Right-shift on ℓ 1 ( N ) C = { p ∈ ℓ 1 ( N ) : p i ≥ 0 , ∑ ∞ i =0 p i = 1 } with diam( C ) = 2 T ( p 0 , p 1 , p 2 , . . . ) = (0 , p 0 , p 1 , p 2 , . . . ) is an isometry x 0 = (1 , 0 , 0 , 0 , . . . ) x 1 = (1 − α 1 , α 1 , 0 , 0 , . . . ) x 2 = ((1 − α 2 )(1 − α 1 ) , (1 − α 2 ) α 1 + α 2 (1 − α 1 ) , α 2 α 1 , 0 , . . . ) x 3 = . . . 0.18 0.16 x n k = P ( X 1 + · · · + X n = k ) 0.14 0.12 X i ∼ Bernoulli( α i ) 0.1 0.08 ∥ Tx n − x n ∥ 1 = 2 max k x n 0.06 0.04 k 0.02 0 −5 0 5 10 15 20 25 R. Cominetti (Universidad de Chile) 6 / 23 Fixed-point iterations - nonexpansive maps

  15. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Example: Right-shift on ℓ 1 ( N ) C = { p ∈ ℓ 1 ( N ) : p i ≥ 0 , ∑ ∞ i =0 p i = 1 } with diam( C ) = 2 T ( p 0 , p 1 , p 2 , . . . ) = (0 , p 0 , p 1 , p 2 , . . . ) is an isometry x 0 = (1 , 0 , 0 , 0 , . . . ) x 1 = (1 − α 1 , α 1 , 0 , 0 , . . . ) x 2 = ((1 − α 2 )(1 − α 1 ) , (1 − α 2 ) α 1 + α 2 (1 − α 1 ) , α 2 α 1 , 0 , . . . ) x 3 = . . . 0.18 0.16 x n k = P ( X 1 + · · · + X n = k ) 0.14 0.12 X i ∼ Bernoulli( α i ) 0.1 0.08 ∥ Tx n − x n ∥ 1 = 2 max k x n 0.06 0.04 k 0.02 0 −5 0 5 10 15 20 25 x k ( t ) = e − t t k dx dt + [ I − T ]( x ) = 0 ⇒ k ! . . . Poisson( t ). Remark: R. Cominetti (Universidad de Chile) 6 / 23 Fixed-point iterations - nonexpansive maps

  16. . . . . . . . . . Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Sums of Bernoullis and ( BB ) . Theorem (Baillon-C-Vaisman, arXiv’2013) . . . Let X i be independent Bernoullis with P ( X i =1) = α i . Then η p n k = P ( X 1 + . . . + X n = k ) ≤ √∑ n i =1 α i (1 − α i ) √ u e − u I 0 ( u ) ∼ 0 . 4688 with I 0 ( · ) modified Bessel where η = max u ≥ 0 function. This bound is sharp. . . . . . R. Cominetti (Universidad de Chile) 7 / 23 Fixed-point iterations - nonexpansive maps

  17. Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Sums of Bernoullis and ( BB ) . Theorem (Baillon-C-Vaisman, arXiv’2013) . . . Let X i be independent Bernoullis with P ( X i =1) = α i . Then η p n k = P ( X 1 + . . . + X n = k ) ≤ √∑ n i =1 α i (1 − α i ) √ u e − u I 0 ( u ) ∼ 0 . 4688 with I 0 ( · ) modified Bessel where η = max u ≥ 0 function. This bound is sharp. . . . . . . Corollary . . . For the right shift in ℓ 1 ( N ) the optimal bound in ( BB ) is κ = η . . . . . . R. Cominetti (Universidad de Chile) 7 / 23 Fixed-point iterations - nonexpansive maps

  18. . . . . . . . . . Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Affine Maps x , r ) with r = ∥ x 0 − ¯ Let ¯ x ∈ Fix T and C = B (¯ x ∥ so that T : C → C . R. Cominetti (Universidad de Chile) 8 / 23 Fixed-point iterations - nonexpansive maps

  19. . . . . . . . . . Sequential Averaging for Nonexpansive Maps OTAE – Toronto – Spetember 2014 Affine Maps x , r ) with r = ∥ x 0 − ¯ Let ¯ x ∈ Fix T and C = B (¯ x ∥ so that T : C → C . x n = ∑ n k =0 p n k T k x 0 T affine ⇒ ∥ Tx n − x n ∥ ≤ 2 r max k p n ⇒ k R. Cominetti (Universidad de Chile) 8 / 23 Fixed-point iterations - nonexpansive maps

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend