recent progress in the solution of the hamiltonian
play

Recent Progress in the Solution of the Hamiltonian Eigenvalue - PowerPoint PPT Presentation

Recent Progress in the Solution of the Hamiltonian Eigenvalue Problem David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State University Calais, May 2009 p. 1 Alternating Pencils Calais, May 2009 p. 2


  1. Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations Calais, May 2009 – p. 11

  2. Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations Calais, May 2009 – p. 11

  3. Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations isotropic subspace : U T JU = 0 Calais, May 2009 – p. 11

  4. Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations isotropic subspace : U T JU = 0 isotropy and symplectic matrices Calais, May 2009 – p. 11

  5. Difficulty Obtaining Hessenberg Form Calais, May 2009 – p. 12

  6. Difficulty Obtaining Hessenberg Form PVL form (1981) Calais, May 2009 – p. 12

  7. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Calais, May 2009 – p. 12

  8. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers’ Hamiltonian QR (1983) Calais, May 2009 – p. 12

  9. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers’ Hamiltonian QR (1983) Van Loan’s Curse Calais, May 2009 – p. 12

  10. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers’ Hamiltonian QR (1983) Van Loan’s Curse getting an isotropic Krylov subspace? Calais, May 2009 – p. 12

  11. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers’ Hamiltonian QR (1983) Van Loan’s Curse getting an isotropic Krylov subspace? Ammar/Mehrmann (1991) Calais, May 2009 – p. 12

  12. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers’ Hamiltonian QR (1983) Van Loan’s Curse getting an isotropic Krylov subspace? Ammar/Mehrmann (1991) new ideas needed Calais, May 2009 – p. 12

  13. Skew-Hamiltonian matrices . . . Calais, May 2009 – p. 13

  14. Skew-Hamiltonian matrices . . . . . . are easier Calais, May 2009 – p. 13

  15. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : Calais, May 2009 – p. 13

  16. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H Hamiltonian ⇒ H 2 skew Hamiltonian Calais, May 2009 – p. 13

  17. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H Hamiltonian ⇒ H 2 skew Hamiltonian more and bigger invariant subspaces Calais, May 2009 – p. 13

  18. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H Hamiltonian ⇒ H 2 skew Hamiltonian more and bigger invariant subspaces Krylov subspaces are automatically isotropic. Calais, May 2009 – p. 13

  19. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H Hamiltonian ⇒ H 2 skew Hamiltonian more and bigger invariant subspaces Krylov subspaces are automatically isotropic. reduction to Hessenberg form Calais, May 2009 – p. 13

  20. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H Hamiltonian ⇒ H 2 skew Hamiltonian more and bigger invariant subspaces Krylov subspaces are automatically isotropic. reduction to Hessenberg form make use of H 2 Calais, May 2009 – p. 13

  21. Symplectic URV Decomposition Calais, May 2009 – p. 14

  22. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T Calais, May 2009 – p. 14

  23. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 Calais, May 2009 – p. 14

  24. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 H 2 = U ( R 1 R 2 ) U T Calais, May 2009 – p. 14

  25. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 H 2 = U ( R 1 R 2 ) U T � − ST � Z R 1 R 2 = − ( ST ) T 0 Calais, May 2009 – p. 14

  26. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 H 2 = U ( R 1 R 2 ) U T � − ST � Z R 1 R 2 = − ( ST ) T 0 eigenvalues of H Calais, May 2009 – p. 14

  27. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 H 2 = U ( R 1 R 2 ) U T � − ST � Z R 1 R 2 = − ( ST ) T 0 eigenvalues of H Benner/Mehrmann/Xu (1998) Calais, May 2009 – p. 14

  28. CLM Method Calais, May 2009 – p. 15

  29. CLM Method Chu/Liu/Mehrmann (2004) Calais, May 2009 – p. 15

  30. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU Calais, May 2009 – p. 15

  31. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU � − ST � Z H 2 = − ( ST ) T 0 Calais, May 2009 – p. 15

  32. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU � − ST � Z H 2 = − ( ST ) T 0 span { e 1 } invariant under H 2 Calais, May 2009 – p. 15

  33. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU � − ST � Z H 2 = − ( ST ) T 0 span { e 1 } invariant under H 2 ⇒ span { e 1 , He 1 } invariant under H Calais, May 2009 – p. 15

  34. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU � − ST � Z H 2 = − ( ST ) T 0 span { e 1 } invariant under H 2 ⇒ span { e 1 , He 1 } invariant under H Extract 1-d isotropic invariant subspace. Calais, May 2009 – p. 15

  35. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU � − ST � Z H 2 = − ( ST ) T 0 span { e 1 } invariant under H 2 ⇒ span { e 1 , He 1 } invariant under H Extract 1-d isotropic invariant subspace. Build an orthogonal symplectic similarity transformation. Calais, May 2009 – p. 15

  36. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU � − ST � Z H 2 = − ( ST ) T 0 span { e 1 } invariant under H 2 ⇒ span { e 1 , He 1 } invariant under H Extract 1-d isotropic invariant subspace. Build an orthogonal symplectic similarity transformation. (with form of H 2 preserved!) Deflate. Calais, May 2009 – p. 15

  37. Block CLM Method Calais, May 2009 – p. 16

  38. Block CLM Method CLM works surprisingly well. Calais, May 2009 – p. 16

  39. Block CLM Method CLM works surprisingly well. difficulties with clusters Calais, May 2009 – p. 16

  40. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Calais, May 2009 – p. 16

  41. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) Calais, May 2009 – p. 16

  42. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S (of dimension k ) invariant under H 2 Calais, May 2009 – p. 16

  43. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S (of dimension k ) invariant under H 2 ⇒ span {S , H S} invariant under H Calais, May 2009 – p. 16

  44. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S (of dimension k ) invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. Calais, May 2009 – p. 16

  45. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S (of dimension k ) invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. Build a similarity transformation that deflates 2 k eigenvalues. Calais, May 2009 – p. 16

  46. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S (of dimension k ) invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. Build a similarity transformation that deflates 2 k eigenvalues. This is Calais, May 2009 – p. 16

  47. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S (of dimension k ) invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. Build a similarity transformation that deflates 2 k eigenvalues. This is more robust, Calais, May 2009 – p. 16

  48. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S (of dimension k ) invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. Build a similarity transformation that deflates 2 k eigenvalues. This is more robust, more efficient, Calais, May 2009 – p. 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend