reaching out
play

Reaching out a Bayesian approach to detecting giant planets beyond - PowerPoint PPT Presentation

Reaching out a Bayesian approach to detecting giant planets beyond the ice line Rodrigo F. Daz Geneva Observatory rodrigo.diaz@unige.ch Hbrard, Bouchy, Udry, Arnold, Astudillo-Defru, Boisse, Bonfils, Borgniet, Bourrier, Courcol, Delfosse,


  1. Reaching out a Bayesian approach to detecting giant planets beyond the ice line Rodrigo F. Díaz Geneva Observatory rodrigo.diaz@unige.ch Hébrard, Bouchy, Udry, Arnold, Astudillo-Defru, Boisse, Bonfils, Borgniet, Bourrier, Courcol, Delfosse, Deleuil, Demangeon, Ehrenreich, Forveille, Lagrange, Moutou, Rey, Santerne, Santos, Ségransan, Wilson. The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation

  2. Full characterisation of planetary system architectures. • Put Solar System in context. • Dynamics. • Constraints for halitbitbaiy of interior rocky planets. • How hard is it? • 1 Mjup at 3 AU (5 years): 16 m/s (p(transit) ~ 0.15%) • 1 Mjup at 5.2 AU (12 years): 12 m/s (p(transit) ~ 0.09%) Marcy et al. (2002), Pepe et al. (2007), Wright et al. (2009), Fischer et al. (2009), Moutou et al. (2011), Robertson et al. (2012), Boisse et al. (2012), … etc.

  3. 2 BIG issues

  4. 1. Instruments • Instrumental stability over many years required. • No single unmodified instrument over > 12 years: • ELODIE (1994 - 2006) —> SOPHIE (2006 - 2011) —> SOPHIE+ (2011 -) • CORALIE (1998 - ); upgraded in 2007 and 2014. • Hamilton@Lick (1987 - 2011); upgraded in 1994, 1998 and 2001. • HIRES@Keck (1996 - ); upgraded in 2004. • HARPS (2004 - ); upgraded recently (2015). • Combine di ff erent instruments + deal with instrument upgrades. References: Bouchy et al. (2013), Ségransan et al. (2010), Fischer et al. (2014)

  5. 1. Instruments • Di ff erent instruments + instrument upgrades. • Fixing the o ff set value is bad practice. • Instrument o ff sets can be included Boisse et al. (2012) as model (nuisance) parameters. ELODIE-SOPHIE • Fitting for the parameters freely can Boisse et al. (2012) 0 lead to spurious detections or unstable solutions. -0.1 • The Bayesian sets priors based on her current knowledge of the -0.2 instrument. 0.6 0.8 1

  6. 2. Stars • Between 53 - 70 % of old stars in the Solar neighbourhood exhibit large amplitude cycles (Lovis+2011, Baliunas+1998). • Cyclic stars with periods as short as a few years. Lovis et al. (2011) • Two e ff ects are expected: • Cycle e ff ect on the RVs. Or maybe not? • Varying “ jitter” as activity level changes. Baliunas et al. (1995)

  7. 2. Stars HD40307 10 -4.6 Díaz et al. (2015) 1.0 6.10 -4.7 20 0 Full-width at half-maximum [km s � 1 ] Bisector Velocity Span [m s � 1 ] -4.8 0.8 Normalised power 6.05 -10 -4.9 ∆ RV [m s � 1 ] 10 0.6 HK log R 0 -5.0 -20 6.00 0.4 -5.1 0 RV -30 5.95 log R 0 0.2 HK -5.2 BIS -10 FWHM -40 -5.3 0.0 RV BIS 5.90 10 3 10 4 FWHM log R 0 HK Period [days] -5.4 2006 2008 2010 2012 2014 Year • Long-term activity evolution well correlated with RV. • Velocity scatter increases with activity level. • Short-term e ff ect much more complex and di ffi cult to model in detail.

  8. The model Activity cycles modelled as polynomial or Keplerian, using priors based on logR’hk, and a Planets and scale factor. non-“jitter” activity a ( t i ) = α · P log R 0 ( t i ) HK RV at t i measured (rotational 3 modulation). by instrument k a ( t i ) = α 0 · k log R 0 HK ( t i ) Drifts (degree l ). n v ( k ) k j ( t i ) + p l ( t i ) + a ( t i ) + ✏ ( k ) X = � k + i i j =1 Short-term activity “jitter” (including Independent Gaussian Number of parameters: instrumental noise). “Complex physics”; measurements errors 5 j + (1-3) + 1 + (3 | 5) + 2 modelled statistically. assumed. Parameter posterior PDF sampled using a MCMC + adaptive PCA algorithm (details in Díaz +2014. Starting point obtained using Genetic i.e., the “jitter” increases with activity. Algorithm.

  9. The HARPS search for southern extra-solar planets. XXXVII. Bayesian re-analysis of three systems. New super Earths, unconfirmed signals, and magnetic cycles. ? R. F. Díaz 1 , D. Ségransan 1 , S. Udry 1 , C. Lovis 1 , F. Pepe 1 , X. Dumusque 2 , 1 , M. Marmier 1 , R. Alonso 3 , 4 , W. Benz 5 , F. Bouchy 1 , 6 , A. Co ffi net 1 , A. Collier Cameron 7 , M. Deleuil 6 , P. Figueira 8 , M. Gillon 9 , G. Lo Curto 10 , M. Mayor 1 , C. Mordasini 5 , F. Motalebi 1 , C. Moutou 6 , 11 , D. Pollacco 12 , E. Pompei 10 , D. Queloz 1 , 13 , N. Santos 8 , 14 , and A. Wyttenbach 1 Planet b; P = 5.771 d Planet c; P = 13.505 d Activity cycle; P = 3573.568 d 6 4 RV [m s � 1 ] 2 0 HD1461 -2 -4 -6 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 Orbital phase Orbital phase Orbital phase Planet b; P = 4.311 d Planet c; P = 9.622 d Planet d; P = 20.418 d Planet f; P = 51.592 d 6 4 RV [m s − 1 ] 2 0 HD40307 -2 -4 -6 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 Orbital phase Orbital phase Orbital phase Orbital phase

  10. Three new long-period giant planet candidates. ELODIE • Stars originally observed with ELODIE but not showing significant trend (i.e. not in the SP5). • Targets observed as part of the SP2: • ~2100-stars volume-limited sample. • Precision of 3 - 4 m/s. • Targets started with SOPHIE and continued with SOPHIE+. Three "di ff erent" instruments. SOPHIE

  11. Targets Parameters HD 191806 HD 214823 HD 221585 Sp. T. (1) ?? G0V G8IV V (1) 8.09 8.06 7.47 B � V (1) 0.64 0.63 0.77 ⇡ (2) [mas] 14 . 41 ± 0 . 50 10 . 25 ± 0 . 68 17 . 40 ± 0 . 60 T (3) [K] 6010 ± 30 6215 ± 30 5620 ± 27 e ff [ Fe / H ] (3) [dex] + 0 . 30 ± 0 . 02 0 . 17 ± 0 . 02 0 . 29 ± 0 . 02 log ( g ) (3) [cgs] 4 . 45 ± 0 . 03 4 . 34 ± 0 . 06 4 . 05 ± 0 . 04 M (3) [M � ] 1.14 1.22 1.19 ?

  12. Bouchy et al. (2013) Seeing effect corrected on SOPHIE data RVc = RV + 1.04*(dRV - <dRV>) SOPHIE+ constants corrected Coucol et al. (2015) Data analysis: yorbit GA + APCA MCMC Ségransan et al. (2011); Díaz et al. (2014)

  13. Offset priors n v ( k ) k j ( t i ) + p l ( t i ) + a ( t i ) + ✏ ( k ) X = � k + i i j =1 ELODIE-SOPHIE 0 ELODIE-SOPHIE: offset priors based on Boisse et al. (2012). -0.1 SOPHIE-SOPHIE + offset: -0.2 N(0, 10 m/s) 0.6 0.8 1

  14. Activity indexes • Scatter in R’ HK very large (~10 times scatter in HARPS). • Alternative given by Halpha index.

  15. • Halpha and Ca II do not probe the same stellar atmosphere height. • On the question of the correlation: • Cincunegui+2007 • Meunier & Delfosse 2009 • Gomes da Silva 2014 • E ff ect on RVs is not well known. Image credit: ?

  16. Work by J. Rey, I. Boisse, O. Girault

  17. The (simplified) model n v ( k ) k j ( t i ) + p l ( t i ) + ✏ ( k ) X = � k + i i j =1 ELODIE-SOPHIE: offset priors based on Boisse et al. (2012). σ Ji ∝ I [ H α ] i.e., the “jitter” increases with activity (as measured by Halpha). SOPHIE-SOPHIE + offset: N(0, 10 m/s) It turns out that in all cases n = 1 is enough.

  18. HD191806 HD214823 HD221585

  19. HD191806 - k1 vs k1d1 Model k1 Model k1d1 Prior from Boisse+2012

  20. HD191806 - k1 vs k1d1 Bayesian model comparison p ( H j | I,D ) = p ( D | H i ,I ) p ( H i | I,D ) p ( D | H j ,I ) · p ( H i | I ) p ( H j | I ) H i hypothesis (drift / no drift) D data; I prior information. Assuming prior odds = 1 Perrakis estimator p ( H k 1 d 1 | I, D ) = p ( D | H k 1 d 1 , I ) ∼ 290 ± 70 p ( H k 1 | I, D ) p ( D | H k 1 , I ) Similar result obtained with other estimators.

  21. HD191806 HD214823 HD221585 Period [d] 1606.5 +/- 7.4 1876 +/- 17 1172 +/- 19 Period [yr] 4.40 +/- 0.02 5.14 +/- 0.05 3.21 +/- 0.05 K [m/s] 140.5 +/- 2.2 281.3 +/- 3.7 27.8 +/- 1.7 0.120 +/- 0.070 ecc 0.261 +/- 0.019 0.154 +/- 0.015 95% HDI: [0.0, 0.3] a [AU] 2.81 +/- 0.11 3.20 +/- 0.13 2.309 +/- 0.085 Msini [Mjup] 8.56 +/- 0.62 19.4 +/- 1.5 1.60 +/- 0.16

  22. HD191806 HD214823 HD221585

  23. Summary • Planet detection beyond the ice line is challenging but worth it. Full characterisation of planet system architectures. • Put Solar System in context. • Constraints for h@b17@b1l17y of interior in rocky planets. • • Combination of instrument knowledge and statistical tools necessary to deal with major issues: Instrument changes / offsets. • Stellar activity evolution (cycles). • • Combined ELODIE - SOPHIE time bases allow constraining long-period objects.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend