r r s
play

r rs Critical Endpoint? T c Hadron Resonance Gas Quarkyonic - PowerPoint PPT Presentation

SU ( 2 ) CS and SU ( 4 ) symmetries of high temperature QCD Christian Rohrhofer (Osaka Univ.) FLQCD @ YITP Kyoto University April 18th, 2019 PRD 96 (2017) no.9, 094501 1902.03191 in collaboration with: Y. Aoki, G. Cossu, H. Fukaya, C.


  1. SU ( 2 ) CS and SU ( 4 ) symmetries of high temperature QCD Christian Rohrhofer (Osaka Univ.) FLQCD @ YITP Kyoto University April 18th, 2019 PRD 96 (2017) no.9, 094501 1902.03191 in collaboration with: Y. Aoki, G. Cossu, H. Fukaya, C. Gattringer, L. Ya. Glozman, S. Hashimoto, C.B. Lang, S. Prelovsek

  2. Conjectured phase diagram of QCD T Asymptotic freedom ❤❡r❡ ❜❡ ❞r❛❣♦♥s❄ Critical Endpoint? T c Hadron Resonance Gas Quarkyonic matter Hadrons Nuclear matter Color superconductors Vacuum Neutron stars µ 1

  3. The high temperature phase of QCD • Experimental access by Heavy Ion Collisions (LHC, RHIC, FAIR, NICA) • Theoretical access through Lattice QCD: • High T thermodynamics turn to precision measurements • Sign problem for finite chemical potential • Critical temperature T c ≃ 154 MeV p/T 4 5 SB lattice continuum limit 5 4 4 N τ =6 3 N τ =8 4 N τ =10 p/T 3 N τ =12 p4, N τ =6 2 p4, N τ =8 2 HTL NNLO 1 1 HRG T [MeV] T[MeV] 0 0 200 400 600 800 1000 1200 200 300 400 500 left : A.Bazavov et al , Phys.Rev. D97 (2018) no.1, 014510 right : S.Borsanyi et al , Phys.Lett. B730 (2014) 99-104 2

  4. An experiment: modifying the Dirac spectrum Numerical studies of Hadron spectrum upon Dirac low-mode truncation � ¯ qq � = πρ ( 0 ) Q top = n − − n + Chiral spin SU ( 2 ) CS and SU ( 2 n f ) symmetries derived similarity due to suppression of low modes in high T QCD? M.Denissenya,L.Glozman,C.B.Lang, Phys.Rev.D91, 034505 3

  5. High temperature lattice ensembles • n f = 2 Möbius DW fermions, Symanzik gauge action • N s = 32 lattices, T c = 175MeV • L s is set between 10 − 24 for good chirality • spatial correlations in z -direction: zT = ( n z a ) / ( N t a ) = n z / N t • Temperatures between 1 . 25 T c − 5 . 5 T c : 32 3 × 12 32 3 × 8 32 3 × 6 32 3 × 4 T [MeV] β = 4 . 10 220 β = 4 . 18 260 β = 4 . 30 220 330 440 660 β = 4 . 37 380 β = 4 . 50 480 960 JLQCD collab. (G.Cossu et al ), Phys.Rev. D93 (2016) no.3, 034507 A.Tomiya et al , Phys.Rev. D96 (2017) no.3, 034509 4

  6. Eigenvalue distribution at high T 0.10 0.08 32 × 8 0.06 ρ ( λ ) Spectral density ρ ( λ ) β = 4.10 0.04 T = 220 MeV for high T ensembles 0.02 0.00 0 350 700 1050 1400 40 eigenmodes / configuration | λ | [MeV] 0.25 ∼ 15 configurations m ud = 0.001 m ud = 0.005 0.20 m ud = 0.01 0.15 32 × 4 ρ ( λ ) Strong suppression β = 4.30 0.10 T = 660 MeV of low modes! 0.05 0.00 0 350 700 1050 1400 | λ | [MeV] 5

  7. Operators and the Dirac algebra Measure local isovectors O Γ ( x ) = ¯ q ( x )Γ q ( x ) Fix direction of propagation ( z-direction ): � �O Γ ( n x , n y , n z , n t ) O Γ ( 0 , 0 , 0 , 0 ) † � C Γ ( n z ) = n x , n y , n t Using ∂ µ j µ = ∂ µ j µ 5 = 0 the Gamma structures for the Vectors are:     γ 1 = Vx γ 1 γ 5 = Ax V = γ 2 = Vy A = γ 2 γ 5 = Ay     γ 4 = Vt γ 4 γ 5 = At     γ 1 γ 3 = Tx γ 1 γ 3 γ 5 = γ 2 γ 4 = Xx T = γ 2 γ 3 = Ty X = γ 2 γ 3 γ 5 = γ 4 γ 1 = Xy     γ 4 γ 3 = Tt γ 4 γ 3 γ 5 = γ 1 γ 2 = Xt γ 3 & γ 3 γ 5 no propagation due to current conservation! + Pion, Scalar 6

  8. What to expect from two-flavor L QCD and χ S? Symmetry of massless L : SU ( 2 ) L × SU ( 2 ) R × U ( 1 ) A × U ( 1 ) V Pseudoscalar Scalar U ( 1 ) A PS S ¯ ¯ q ( � τ ⊗ γ 5 ) q q ( � τ ⊗ 1 D ) q Vector Axial Vector SU ( 2 ) A V A ¯ ¯ q ( � τ ⊗ γ k ) q q ( � τ ⊗ γ 5 γ k ) q Tensor Vector Axial Tensor V. U ( 1 ) A T X ¯ ¯ q ( � τ ⊗ γ 3 γ k ) q q ( � τ ⊗ γ 5 γ 3 γ k ) q U ( 1 ) A broken by � ¯ qq � and axial anomaly SU ( 2 ) L × SU ( 2 ) R broken by � ¯ qq � 7

  9. Spatial correlations for T ≤ 2 T c 0 10 220 MeV 260 MeV -1 10 -2 10 C(n z ) / C(n z =1) -3 10 PS S -4 10 Vx Vt -5 Ax 10 At Tx -6 10 Tt Xx -7 Xt 10 0 10 320 MeV 380 MeV -1 10 -2 10 C(n z ) / C(n z =1) -3 10 E 1 -4 E 2 10 -5 10 E 3 -6 10 -7 10 0 0.5 1 1.5 2 0 0.5 1 1.5 2 zT zT 8

  10. Spatial correlations for T > 2 T c 0 10 -1 440 MeV 480 MeV 10 -2 10 -3 10 -4 C(n z ) / C(n z =1) 10 -5 10 PS S -6 10 Vx -7 Vt 10 Ax -8 10 At Tx -9 10 Tt -10 Xx 10 Xt -11 10 0 10 -1 660 MeV 960 MeV 10 -2 10 -3 10 -4 C(n z ) / C(n z =1) 10 -5 10 -6 10 -7 10 -8 10 -9 10 -10 10 -11 10 0 1 2 3 4 0 1 2 3 4 zT zT 9

  11. E 1 and E 2 multiplets at 2 T c 0 10 free PS free Vx 380 MeV free Tt free ( U ( x ) µ = 1 ), -1 10 dressed PS non-interacting quarks: dressed S chiral symmetry dressed Vx -2 dressed Ax 10 dressed Tt C(n z ) / C(n z =1) dressed Xt U ( 1 ) A : S ↔ PS -3 10 SU ( 2 ) A : V x ↔ A x free PS, S dressed PS, S U ( 1 ) A : T t ↔ X t free Vx, Ax -4 10 free Tt, Xt -5 10 dressed meson dressed Vx, Ax, Tt, Xt correlators: larger symmetry -6 10 0 0.5 1 1.5 2 zT 10

  12. SU ( 2 ) L × SU ( 2 ) R and U ( 1 ) A symmetries • � ¯ qq � and topological susceptibility* suggest ‘good’ symmetries • Use ratio of ‘connected’ operators as measure 260 MeV 1.75 SU(2) A 220 MeV 1.75 U(1) A 1.50 1.50 Vx/Ax m ud =0.001 PS/S m ud =0.005 m ud =0.01 1.25 1.25 1.00 32x8 1.00 32x8 β =4.10 β =4.18 0 1 2 3 4 0 1 2 3 4 zT zT *previous talk, JLQCD collab. (K.Suzuku et al ), EPJ Web Conf. 175 (2018) 07025 11

  13. SU ( 2 ) CS chiral spin and SU ( 4 ) symmetries SU ( 2 ) CS → e i � Σ � � θ/ 2 Ψ Ψ − − − − − Σ = { γ k , − i γ 5 γ k , γ 5 }   u L u R all components of   ⋄ Physical interpretation:   d L fundamental vector mix!   d R ⋄ for spatial z − correlators generated by representations: R 1 : { γ 1 , − i γ 5 γ 1 , γ 5 } A y ↔ T t ↔ X t ⇒ R 2 : { γ 2 , − i γ 5 γ 2 , γ 5 } A x ↔ T t ↔ X t ⋄ Minimal group containing SU ( 2 ) CS and χ S is SU ( 4 ) : � V x ↔ T t ↔ X t ↔ A x E 2 V y ↔ T t ↔ X t ↔ A y � V t ↔ T x ↔ X x ↔ A t E 3 V t ↔ T y ↔ X y ↔ A t L.Glozman, Eur.Phys.J. A51 (2015) no.3, 27 L.Glozman and M.Pak, Phys.Rev. D92 (2015) no.1, 016001 12

  14. Symmetries of the Lagrangian SU ( 2 ) CS → e i � Σ � � θ/ 2 Ψ Ψ − − − − − Σ = { γ k , − i γ 5 γ k , γ 5 } L = ¯ Ψ i / ∂ Ψ Free, massless Lagrangian: breaks SU ( 2 ) CS Covariant derivative: D µ = ∂ µ − igA µ L = ¯ D Ψ = ¯ Ψ i γ 0 D 0 Ψ + ¯ Ψ i / Ψ i γ i D i Ψ Massless (fermionic) Lagrangian: 2.0 SU ( 2 ) CS invariant SU(2) CS • Kinetic term breaks SU ( 2 ) CS 1.5 Ax/Tt • ‘Magnetic’ term breaks SU ( 2 ) CS • ‘Electric’ term is SU ( 2 ) CS symmetric 1.0 A x and T t mix under SU ( 2 ) CS Use ratio to measure breaking! 0 0.5 1 1.5 2 zT 13

  15. 1.8 T = 220 MeV, full QCD T = 320 MeV, full QCD 32x12 32x8 free quarks T = 380 MeV, full QCD 1.6 T = 480 MeV, full QCD free quarks full QCD propagator C Ax (n z ) / C Ax (n z =1) ______________ C Tt (n z ) / C Tt (n z =1) 1.4 full QCD propagators 1.2 1.0 propagator with 0.8 propagator with free quarks free quarks 1.8 T = 440 MeV, full QCD T = 660 MeV, full QCD 32x6 32x4 free quarks T = 960 MeV, full QCD 1.6 free quarks C Ax (n z ) / C Ax (n z =1) ______________ C Tt (n z ) / C Tt (n z =1) 1.4 1.2 full QCD propagator full QCD propagators 1.0 0.8 propagator with propagator with free quarks free quarks 0.6 0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 zT zT A x / T t ratio measures SU ( 2 ) CS breaking 14

  16. The phase diagram & chemical potential � β � d 3 x ¯ S = Ψ[ γ µ D µ + µγ 4 ]Ψ 0 15

  17. Conclusions � spatial correlations at temperatures 1 . 25 − 5 . 5 T c � chiral symmetry and effective U ( 1 ) A restoration above T c � approximate SU ( 2 ) CS symmetric region → SU ( 4 ) ⇒ SU ( 2 ) CS a tool to distinguish color-electric and color-magnetic contributions chiral quarks connected by color-electric field as elementary objects at high T (strings?) Thank you for listening! 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend