r mi gribonval inria rennes bretagne atlantique
play

Rmi Gribonval Inria Rennes - Bretagne Atlantique - PowerPoint PPT Presentation

Rmi Gribonval Inria Rennes - Bretagne Atlantique remi.gribonval@inria.fr Contributors & Collaborators Anthony Bourrier Nicolas Keriven Yann Traonmilin Gilles Puy Gilles Blanchard Mike Davies Tomer Peleg Patrick Perez 2 R.


  1. Rémi Gribonval Inria Rennes - Bretagne Atlantique remi.gribonval@inria.fr

  2. Contributors & Collaborators Anthony Bourrier Nicolas Keriven Yann Traonmilin Gilles Puy Gilles Blanchard Mike Davies Tomer Peleg Patrick Perez 2 R. GRIBONVAL - CSA 2015 - Berlin

  3. Agenda From Compressive Sensing to Compressive Learning ? Information-preserving projections & sketches Compressive Clustering / Compressive GMM Conclusion 3 R. GRIBONVAL - CSA 2015 - Berlin

  4. Machine Learning Available data X training collection of feature vectors = point cloud Goals infer parameters to achieve a certain task generalization to future samples with the same probability distribution Examples PCA Clustering Dictionary learning Classification principal subspace centroids dictionary classifier parameters (e.g. support vectors) 4 R. GRIBONVAL - CSA 2015 - Berlin

  5. Challenging dimensions Point cloud = large matrix of feature vectors X 5 R. GRIBONVAL - CSA 2015 - Berlin

  6. Challenging dimensions Point cloud = large matrix of feature vectors X x 1 5 R. GRIBONVAL - CSA 2015 - Berlin

  7. Challenging dimensions Point cloud = large matrix of feature vectors X x 1 x 2 5 R. GRIBONVAL - CSA 2015 - Berlin

  8. Challenging dimensions Point cloud = large matrix of feature vectors … X X x 1 x 2 x N 5 R. GRIBONVAL - CSA 2015 - Berlin

  9. Challenging dimensions Point cloud = large matrix of feature vectors … X X x 1 x 2 x N High feature dimension n Large collection size N 5 R. GRIBONVAL - CSA 2015 - Berlin

  10. Challenging dimensions Point cloud = large matrix of feature vectors … X X x 1 x 2 x N High feature dimension n Large collection size N Challenge: compress before learning ? X 5 R. GRIBONVAL - CSA 2015 - Berlin

  11. Compressive Machine Learning ? Point cloud = large matrix of feature vectors … X X x 1 x 2 x N M … Y = MX y 1 y 2 y N 6 R. GRIBONVAL - CSA 2015 - Berlin

  12. Compressive Machine Learning ? Point cloud = large matrix of feature vectors … X X x 1 x 2 x N Reduce feature dimension [Calderbank & al 2009, Reboredo & al 2013] (Random) feature projection Exploits / needs low-dimensional feature model … Y = MX y 1 y 2 y N 6 R. GRIBONVAL - CSA 2015 - Berlin

  13. Challenges of large collections Feature projection: limited impact X Y = MX 7 R. GRIBONVAL - CSA 2015 - Berlin

  14. Challenges of large collections Feature projection: limited impact X Y = MX “Big Data” Challenge: compress collection size 7 R. GRIBONVAL - CSA 2015 - Berlin

  15. Compressive Machine Learning ? Point cloud = … empirical probability distribution X 8 R. GRIBONVAL - CSA 2015 - Berlin

  16. Compressive Machine Learning ? Point cloud = … empirical probability distribution X Reduce collection dimension coresets see e.g. [Agarwal & al 2003, Felman 2010] sketching & hashing see e.g. [Thaper & al 2002, Cormode & al 2005] 8 R. GRIBONVAL - CSA 2015 - Berlin

  17. Compressive Machine Learning ? Point cloud = … empirical probability distribution M z ∈ R m X Sketching operator nonlinear in the feature vectors linear in their probability distribution Reduce collection dimension coresets see e.g. [Agarwal & al 2003, Felman 2010] sketching & hashing see e.g. [Thaper & al 2002, Cormode & al 2005] 8 R. GRIBONVAL - CSA 2015 - Berlin

  18. Compressive Machine Learning ? Point cloud = … empirical probability distribution M z ∈ R m X Sketching operator nonlinear in the feature vectors linear in their probability distribution Reduce collection dimension coresets see e.g. [Agarwal & al 2003, Felman 2010] sketching & hashing see e.g. [Thaper & al 2002, Cormode & al 2005] 8 R. GRIBONVAL - CSA 2015 - Berlin

  19. Example: Compressive Clustering M z ∈ R m X N = 1000; n = 2 m = 60 Recovery algorithm estimated centroids ground truth 9 R. GRIBONVAL - CSA 2015 - Berlin

  20. Computational impact of sketching Computation time Memory Memory (bytes) Time (s) Collection size N Collection size N Ph.D. A. Bourrier & N. Keriven 10 R. GRIBONVAL - CSA 2015 - Berlin

  21. The Sketch Trick Data distribution X ∼ p ( x ) Sketch N z ` = 1 X h ` ( x i ) N i =1 11 R. GRIBONVAL - CSA 2015 - Berlin

  22. The Sketch Trick Data distribution X ∼ p ( x ) Sketch N z ` = 1 X h ` ( x i ) N i =1 ≈ E h ` ( X ) 11 R. GRIBONVAL - CSA 2015 - Berlin

  23. The Sketch Trick Data distribution X ∼ p ( x ) Sketch N z ` = 1 X h ` ( x i ) N i =1 ≈ E h ` ( X ) Z = h ` ( x ) p ( x ) dx 11 R. GRIBONVAL - CSA 2015 - Berlin

  24. The Sketch Trick Data distribution X ∼ p ( x ) Sketch N z ` = 1 X h ` ( x i ) N i =1 ≈ E h ` ( X ) Z = h ` ( x ) p ( x ) dx nonlinear in the feature vectors linear in the distribution p(x) 11 R. GRIBONVAL - CSA 2015 - Berlin

  25. The Sketch Trick Signal Processing Machine Learning Data distribution inverse problems method of moments compressive sensing compressive learning X ∼ p ( x ) Signal Sketch space Probability N space z ` = 1 X h ` ( x i ) N i =1 p x ≈ E h ` ( X ) Linear M M Z “projection” = h ` ( x ) p ( x ) dx nonlinear in the feature vectors z y linear in the distribution p(x) Observation space Sketch space 11 R. GRIBONVAL - CSA 2015 - Berlin

  26. The Sketch Trick Information preservation ? Signal Processing Machine Learning Data distribution inverse problems method of moments compressive sensing compressive learning X ∼ p ( x ) Signal Sketch space Probability N space z ` = 1 X h ` ( x i ) N i =1 p x ≈ E h ` ( X ) Linear M M Z “projection” = h ` ( x ) p ( x ) dx nonlinear in the feature vectors z y linear in the distribution p(x) Observation space Sketch space 11 R. GRIBONVAL - CSA 2015 - Berlin

  27. The Sketch Trick Dimension reduction ? Signal Processing Machine Learning Data distribution inverse problems method of moments compressive sensing compressive learning X ∼ p ( x ) Signal Sketch space Probability N space z ` = 1 X h ` ( x i ) N i =1 p x ≈ E h ` ( X ) Linear M M Z “projection” = h ` ( x ) p ( x ) dx nonlinear in the feature vectors z y linear in the distribution p(x) Observation space Sketch space 12 R. GRIBONVAL - CSA 2015 - Berlin

  28. Information preserving projections

  29. Stable recovery Signal space R n Ex: set of k -sparse vectors Model set Σ Σ k = { x 2 R n , k x k 0  k } = signals of interest x Linear M “projection” y Observation space R m m ⌧ n 14 R. GRIBONVAL - CSA 2015 - Berlin

  30. Stable recovery Signal space R n Ex: set of k -sparse vectors Model set Σ Σ k = { x 2 R n , k x k 0  k } = signals of interest Ideal goal : build decoder ∆ with the guarantee that x Recovery k x � ∆ ( M x + e ) k  C k e k , 8 x 2 Σ algorithm ∆ Linear M “projection” = (instance optimality [Cohen & al 2009] ) “decoder” y Observation space R m m ⌧ n 14 R. GRIBONVAL - CSA 2015 - Berlin

  31. Stable recovery Signal space R n Ex: set of k -sparse vectors Model set Σ Σ k = { x 2 R n , k x k 0  k } = signals of interest Ideal goal : build decoder ∆ with the guarantee that x Recovery k x � ∆ ( M x + e ) k  C k e k , 8 x 2 Σ algorithm ∆ Linear M “projection” = (instance optimality [Cohen & al 2009] ) “decoder” y Observation space R m Are there such decoders? m ⌧ n 14 R. GRIBONVAL - CSA 2015 - Berlin

  32. Stable recovery of k-sparse vectors Typical decoders L1 minimization ∆ ( y ) := arg min k x k 1 x : M x = y LASSO [Tibshirani 1994] ,Basis Pursuit [Chen & al 1999] Greedy algorithms (Orthonormal) Matching Pursuit [Mallat & Zhang 1993] , Iterative Hard Thresholding (IHT) [Blumensath & Davies 2009] , … Guarantees Assume Restricted isometry property [Candès & al 2004] 1 � δ  k M z k 2 Exact recovery 2  1 + δ k z k 2 Stability to noise 2 Robustness to model error when k z k 0  2 k 15 R. GRIBONVAL - CSA 2015 - Berlin

  33. Stable recovery Signal space R n Model set Low-dimensional model Σ Sparse = signals of interest x Linear M “projection” y Observation space R m m ⌧ n 16 R. GRIBONVAL - CSA 2015 - Berlin

  34. Stable recovery Signal space R n Model set Low-dimensional model Σ Sparse = signals of interest Sparse in dictionary D x Linear M “projection” y Observation space R m m ⌧ n 17 R. GRIBONVAL - CSA 2015 - Berlin

  35. Stable recovery Signal space R n Model set Low-dimensional model Σ Sparse = signals of interest Sparse in dictionary D Co-sparse in analysis operator A total variation, physics-driven sparse models .. x Linear M “projection” y Observation space R m m ⌧ n 18 R. GRIBONVAL - CSA 2015 - Berlin

  36. Stable recovery Signal space R n Model set Low-dimensional model Σ Sparse = signals of interest Sparse in dictionary D Co-sparse in analysis operator A total variation, physics-driven sparse models … Low-rank matrix or tensor x matrix completion, phase-retrieval, blind sensor calibration … Linear M “projection” y Observation space R m m ⌧ n 19 R. GRIBONVAL - CSA 2015 - Berlin

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend