quaternary cryptographic bent functions and their binary
play

Quaternary Cryptographic Bent Functions and their Binary projection - PowerPoint PPT Presentation

B-Q-Fcts G-R Construction D-B-Fcts Example Quaternary Cryptographic Bent Functions and their Binary projection JADDA Zoubida 1 QARBOUA Soukayna 2 PARRAUD Patrice 1 1 Ecoles Militaires de Saint-Cyr Cotquidan, FRANCE CREC, UR - MACCLIA


  1. B-Q-Fcts G-R Construction D-B-Fcts Example Quaternary Cryptographic Bent Functions and their Binary projection JADDA Zoubida 1 QARBOUA Soukayna 2 PARRAUD Patrice 1 1 Ecoles Militaires de Saint-Cyr Coëtquidan, FRANCE CREC, UR - MACCLIA zoubida.jadda@st-cyr.terre-net.defense.gouv.fr patrice.parraud@st-cyr.terre-net.defense.gouv.fr 2 LMIA, Faculty of Sciences, University of Mohamed V Agdal, Rabat, Morocco soukayna.qarboua@gmail.com J OURNÉES C2, O CTOBER 2012 / D INARD J ADDA & P ARRAUD & Q ARBOUA 2012

  2. B-Q-Fcts G-R Construction D-B-Fcts Example The aim of this work m-variables quaternary functions ( F , m ) n − variables boolean functions ( f , n ) F : GR ( 4 , m ) → Z 4 Z 4 = { 0 , 1 , 2 , 3 } f : F n ( F 2 = { 0 , 1 } ) 2 → F 2 The quaternary approach ( CONSTRUCTION ): G ALOIS rings R = GR ( 4 , m ) . C RYPTOGRAPHIC properties . Characterization of a family of quaternary C RYPTOGRAPHIC functions. From Z 4 to F 2 (A PPLICATION ): The binary projection. Drived boolean cryptographic functions. J ADDA & P ARRAUD & Q ARBOUA 2012

  3. B-Q-Fcts G-R Construction D-B-Fcts Example The aim of this work m-variables quaternary functions ( F , m ) n − variables boolean functions ( f , n ) F : GR ( 4 , m ) → Z 4 Z 4 = { 0 , 1 , 2 , 3 } f : F n ( F 2 = { 0 , 1 } ) 2 → F 2 The quaternary approach ( CONSTRUCTION ): G ALOIS rings R = GR ( 4 , m ) . C RYPTOGRAPHIC properties . Characterization of a family of quaternary C RYPTOGRAPHIC functions. From Z 4 to F 2 (A PPLICATION ): The binary projection. Drived boolean cryptographic functions. J ADDA & P ARRAUD & Q ARBOUA 2012

  4. B-Q-Fcts G-R Construction D-B-Fcts Example The aim of this work m-variables quaternary functions ( F , m ) n − variables boolean functions ( f , n ) F : GR ( 4 , m ) → Z 4 Z 4 = { 0 , 1 , 2 , 3 } f : F n ( F 2 = { 0 , 1 } ) 2 → F 2 The quaternary approach ( CONSTRUCTION ): G ALOIS rings R = GR ( 4 , m ) . C RYPTOGRAPHIC properties . Characterization of a family of quaternary C RYPTOGRAPHIC functions. From Z 4 to F 2 (A PPLICATION ): CONTEXT : The binary projection. Drived boolean cryptographic functions. J ADDA & P ARRAUD & Q ARBOUA 2012

  5. B-Q-Fcts G-R Construction D-B-Fcts Example The aim of this work m-variables quaternary functions ( F , m ) n − variables boolean functions ( f , n ) F : GR ( 4 , m ) → Z 4 Z 4 = { 0 , 1 , 2 , 3 } f : F n ( F 2 = { 0 , 1 } ) 2 → F 2 The quaternary approach ( CONSTRUCTION ): G ALOIS rings R = GR ( 4 , m ) . C RYPTOGRAPHIC properties . Characterization of a family of quaternary C RYPTOGRAPHIC functions. From Z 4 to F 2 (A PPLICATION ): CONTEXT : The binary projection. Drived boolean cryptographic functions. J ADDA & P ARRAUD & Q ARBOUA 2012

  6. B-Q-Fcts G-R Construction D-B-Fcts Example Outline Boolean and Quaternary functions 1 Galois Rings 2 The construction 3 Derived boolean functions 4 Complete example of construction 5 J ADDA & P ARRAUD & Q ARBOUA 2012

  7. B-Q-Fcts G-R Construction D-B-Fcts Example Outline Boolean and Quaternary functions 1 Galois Rings 2 The construction 3 Derived boolean functions 4 Complete example of construction 5 J ADDA & P ARRAUD & Q ARBOUA 2012

  8. B-Q-Fcts G-R Construction D-B-Fcts Example Outline Boolean and Quaternary functions 1 Galois Rings 2 The construction 3 Derived boolean functions 4 Complete example of construction 5 J ADDA & P ARRAUD & Q ARBOUA 2012

  9. B-Q-Fcts G-R Construction D-B-Fcts Example Outline Boolean and Quaternary functions 1 Galois Rings 2 The construction 3 Derived boolean functions 4 Complete example of construction 5 J ADDA & P ARRAUD & Q ARBOUA 2012

  10. B-Q-Fcts G-R Construction D-B-Fcts Example Outline Boolean and Quaternary functions 1 Galois Rings 2 The construction 3 Derived boolean functions 4 Complete example of construction 5 J ADDA & P ARRAUD & Q ARBOUA 2012

  11. B-Q-Fcts G-R Construction D-B-Fcts Example outline Boolean and Quaternary functions 1 Galois Rings 2 The construction 3 Derived boolean functions 4 Complete example of construction 5 J ADDA & P ARRAUD & Q ARBOUA 2012

  12. B-Q-Fcts G-R Construction D-B-Fcts Example Boolean functions Let f : F n 2 �− → F 2 Truth table : [ f ( 0 , · · · , 0 ) , · · · , f ( 1 , · · · , 1 )] 2 n Support : supp ( f ) = { u ∈ F n 2 | f ( u ) � = 0 } Weight : w H ( f ) = | supp ( f ) | H AMMING metric : d H ( f , g ) = w H ( f ⊕ g ) ( ⊕ = + mod ( 2 )) J ADDA & P ARRAUD & Q ARBOUA 2012

  13. B-Q-Fcts G-R Construction D-B-Fcts Example Boolean functions Let f : F n 2 �− → F 2 Truth table : [ f ( 0 , · · · , 0 ) , · · · , f ( 1 , · · · , 1 )] 2 n Support : supp ( f ) = { u ∈ F n 2 | f ( u ) � = 0 } Weight : w H ( f ) = | supp ( f ) | H AMMING metric : d H ( f , g ) = w H ( f ⊕ g ) ( ⊕ = + mod ( 2 )) C RYPTOGRAPHIC PROPERTIES . Walsh transform : W f ( u ) = � ( − 1 ) u . v ( − 1 ) f ( v ) , u ∈ F n 2 v ∈ F n 2 w H ( f ) = 2 n − 1 Balancedness : W f ( 0 ) = 0 ⇐ ⇒ nl 2 ( f ) = 2 n − 1 − 1 Nonlinearity : nl 2 ( f ) = min 2 max g affine d H ( f , g ) ⇐ ⇒ | W f ( u ) | u ∈ F n 2 J ADDA & P ARRAUD & Q ARBOUA 2012

  14. B-Q-Fcts G-R Construction D-B-Fcts Example Boolean functions Let f : F n 2 �− → F 2 Truth table : [ f ( 0 , · · · , 0 ) , · · · , f ( 1 , · · · , 1 )] 2 n Support : supp ( f ) = { u ∈ F n 2 | f ( u ) � = 0 } Weight : w H ( f ) = | supp ( f ) | H AMMING metric : d H ( f , g ) = w H ( f ⊕ g ) ( ⊕ = + mod ( 2 )) C RYPTOGRAPHIC PROPERTIES . Walsh transform : W f ( u ) = � ( − 1 ) u . v ( − 1 ) f ( v ) , u ∈ F n 2 v ∈ F n 2 w H ( f ) = 2 n − 1 Balancedness : W f ( 0 ) = 0 ⇐ ⇒ nl 2 ( f ) = 2 n − 1 − 1 Nonlinearity : nl 2 ( f ) = min 2 max g affine d H ( f , g ) ⇐ ⇒ | W f ( u ) | u ∈ F n 2 n 2 . f is bent ⇐ ⇒ ∀ u ∈ F n | W f ( u ) | = 2 2 , n Maximal nonlinearity ( 2 n − 1 − 2 2 − 1 ) for n even but (not balanced) . J ADDA & P ARRAUD & Q ARBOUA 2012

  15. B-Q-Fcts G-R Construction D-B-Fcts Example Quaternary functions Let F , G ∈ F ( Z m 4 , Z 4 ) : Z m 4 �− → Z 4 The group of 4 th root of unity in C The ring of integers modulus 4 group i 2 = − 1 Z 4 = Z / 4 Z = { 0 , 1 , 2 , 3 } U 4 = {± 1 , ± i } ∼ J ADDA & P ARRAUD & Q ARBOUA 2012

  16. B-Q-Fcts G-R Construction D-B-Fcts Example Quaternary functions Let F , G ∈ F ( Z m 4 , Z 4 ) : Z m 4 �− → Z 4 The group of 4 th root of unity in C The ring of integers modulus 4 group i 2 = − 1 Z 4 = Z / 4 Z = { 0 , 1 , 2 , 3 } U 4 = {± 1 , ± i } ∼ Truth table : [ F ( 0 , · · · , 0 ) , · · · , F ( 1 , · · · , 1 )] 4 m Relative support : supp j ( F ) = { u ∈ Z m 4 | F ( u ) = j } 0 ≤ j ≤ 3 Relative cardinal : η j ( F ) = | supp j ( F ) | L EE METRIC 0 1 3 z ∈ Z 4 2 0 1 1 w L ( z ) 2 L EE Weight : w L ( F ) = η 1 ( F ) + 2 η 2 ( F ) + η 3 ( F ) L EE Distance : d L ( F , G ) = w L ( F − G ) [” − ” mod ( 4 )] J ADDA & P ARRAUD & Q ARBOUA 2012

  17. B-Q-Fcts G-R Construction D-B-Fcts Example Quaternary functions Let F , G ∈ F ( Z m 4 , Z 4 ) : Z m 4 �− → Z 4 The group of 4 th root of unity in C The ring of integers modulus 4 group i 2 = − 1 Z 4 = Z / 4 Z = { 0 , 1 , 2 , 3 } U 4 = {± 1 , ± i } ∼ Truth table : [ F ( 0 , · · · , 0 ) , · · · , F ( 1 , · · · , 1 )] 4 m Relative support : supp j ( F ) = { u ∈ Z m 4 | F ( u ) = j } 0 ≤ j ≤ 3 Relative cardinal : η j ( F ) = | supp j ( F ) | L EE METRIC 0 1 3 z ∈ Z 4 2 0 1 1 w L ( z ) 2 L EE Weight : w L ( F ) = η 1 ( F ) + 2 η 2 ( F ) + η 3 ( F ) L EE Distance : d L ( F , G ) = w L ( F − G ) [” − ” mod ( 4 )] W ALSH TRANSFORM . i u . v ( − 1 ) F ( v ) , u ∈ Z n W 2 � i u . v i F ( v ) , u ∈ Z n � W F ( u ) = F ( u ) = 4 4 v ∈ Z n v ∈ Z m 4 4 J ADDA & P ARRAUD & Q ARBOUA 2012

  18. B-Q-Fcts G-R Construction D-B-Fcts Example C RYPTOGRAPHIC PROPERTIES . Let F ∈ F ( Z m 4 , Z 4 ) η j ( F ) = 4 m − 1 The function F is balanced ∀ j ∈ { 0 , 1 , 2 , 3 } ⇐ ⇒ W F ( 0 ) = W 2 F ( 0 ) = 0 ⇐ ⇒ The nonlinearity of F : nl L = min 4 ( F ) G affine d L ( F , G ) 4 m − � � = max Re ( i b W F ( a )) a ∈ Z m 4 , b ∈ Z 4 J ADDA & P ARRAUD & Q ARBOUA 2012

  19. B-Q-Fcts G-R Construction D-B-Fcts Example C RYPTOGRAPHIC PROPERTIES . Let F ∈ F ( Z m 4 , Z 4 ) η j ( F ) = 4 m − 1 The function F is balanced ∀ j ∈ { 0 , 1 , 2 , 3 } ⇐ ⇒ W F ( 0 ) = W 2 F ( 0 ) = 0 ⇐ ⇒ The nonlinearity of F : nl L = min 4 ( F ) G affine d L ( F , G ) 4 m − � � = max Re ( i b W F ( a )) a ∈ Z m 4 , b ∈ Z 4 F is bent ⇐ ⇒ ∀ x ∈ Z m 4 , | W F ( x ) | = 2 m 4 ( F ) = 4 m − 2 m . The nonlinearity of a bent function F is nl L J ADDA & P ARRAUD & Q ARBOUA 2012

  20. B-Q-Fcts G-R Construction D-B-Fcts Example outline Boolean and Quaternary functions 1 Galois Rings 2 The construction 3 Derived boolean functions 4 Complete example of construction 5 J ADDA & P ARRAUD & Q ARBOUA 2012

  21. B-Q-Fcts G-R Construction D-B-Fcts Example G ALOIS Rings T HE M ULTIPLICATIVE REPRESENTATION AND CYCLOTOMIC CLASSES R ≃ Z 4 [ x ] / ( g ( x )) ( b _ poly of deg m ) ≃ Z 4 [ β ] ( 2 m − 1 th root of unity ) ≃ Z m 4 J ADDA & P ARRAUD & Q ARBOUA 2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend