quantum monte carlo calculations of neutrino nucleus
play

Quantum Monte Carlo calculations of Neutrino-Nucleus Interactions - PowerPoint PPT Presentation

Quantum Monte Carlo calculations of Neutrino-Nucleus Interactions PONDD Physics Opportunities in the Near DUNE Detector Hall Alessandro Lovato In collaboration with: C. Barbieri, O. Benhar, J. Carlson, S. Gandolfi, W. Leidemann, G. Orlandini, M.


  1. Quantum Monte Carlo calculations of Neutrino-Nucleus Interactions PONDD Physics Opportunities in the Near DUNE Detector Hall Alessandro Lovato In collaboration with: C. Barbieri, O. Benhar, J. Carlson, S. Gandolfi, W. Leidemann, G. Orlandini, M. Piarulli, N. Rocco, and R. Schiavilla

  2. The Physics case Neutrino-oscillation and 0 νββ experiments Multi-messenger era for nuclear astrophysics • Accurately measure neutrino-oscillation • Gravitational waves have been detected! parameters • Supernovae neutrinos will be detected by the • Determine whether the neutrino is a Majorana current and next generation neutrino experiments or a Dirac particle • Need for including nuclear dynamics; mean- • Nuclear dynamics determines the structure and field models inadequate to describe neutrino- the cooling of neutron stars nucleus interaction

  3. The basic model • In the low-energy regime, quark and gluons are confined inside hadrons. Nucleons can treated as point-like particles interacting through the Hamiltonian p 2 X X X i H = v ij + V ijk + . . . 2 m + i i<j i<j<k • E ff ective field theories are the link between QCD and nuclear observables. They exploit the separation between the “hard” (M~nucleon mass) and “soft” (Q ~ exchanged momentum) scales 2N Force 3N Force LO ( Q/ Λ χ ) 0 NLO ( Q/ Λ χ ) 2 NNLO Courtesy of M. Savage ( Q/ Λ χ ) 3 +...

  4. Nuclear (phenomenological) Hamiltonian The Argonne v 18 is a finite, local, configuration-space potential controlled by ~4300 np and pp scattering data below 350 MeV of the Nijmegen database N N N N N N π π ∆ N N N N N N Three-nucleon interactions e ff ectively include the lowest nucleon excitation, the ∆ (1232) resonance, end other nuclear e ff ects π π π π π π π ∆ π ∆ ∆ ∆ π π π ∆ π π π π π

  5. Nuclear electroweak currents The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation r · J EM + i [ H, J 0 EM ] = 0 • The above equation implies that involves • They are essential for low-momentum and J EM two-nucleon contributions. low-energy transfer transitions. 4 π 3 π π 9 B ∆ 7 Li p 9 Li 3 H 2 1 8 Li 8 B µ ( µ N ) 2 H 6 Li 0 GFMC(IA) 9 C GFMC(TOT) 9 Be 7 Be ρ , ω π π EXPT -1 3 He n -2 -3 S. Pastore at al., PRC 87, 035503 (2013)

  6. Quantum Monte Carlo • Di ff usion Monte Carlo methods use an imaginary-time projection technique to enhance the ground-state component of a starting trial wave function. τ →∞ e − ( H − E 0 ) τ | Ψ T i = lim X c n e − ( E n − E 0 ) τ | Ψ n i = c 0 | Ψ 0 i lim τ →∞ n • Suitable to solve of A ≤ 12 nuclei with ~1% accuracy -20 1 + 4 + 7/2 − 2 + 2 + 0 + 2 + 0 + 0 + 5/2 − 0 + -30 3 + 0 + 1 + 4 He 2 + 5/2 − 1 + 6 He 4 + 8 He 7/2 + 2 + 7/2 − 4 + 6 Li 3 + 5/2 + 1 + 1/2 − 5/2 − -40 2 + 1 + 3 + 7/2 − 3/2 − 1/2 − 3 + 2 + 1 + 7/2 − 3/2 − 7 Li 2 + 4 + 3/2 − 2 + 3 + -50 9 Li 3 + Energy (MeV) 1 + 3/2 + 4 + 8 Li 2 + 1 + 3,2 + 5/2 + 2 + 0 + 1 + Argonne v 18 0 + 1/2 − 3 + -60 8 Be 2 + 5/2 − 2 + 2 + 1/2 + 1 + with Illinois-7 0 + 3/2 − 1 + -70 3 + GFMC Calculations 10 Be 9 Be 10 B 24 November 2012 -80 0 + AV18 -90 AV18 0 + +IL7 Expt. 12 C -100 J. Carlson et al. RMP 87, 1067 (2015)

  7. The basic model of nuclear Physics + Realistic nuclear interactions Nuclear ab-initio methods -20 1 1 + 4 + 7/2 − 2 + 2 + 0 + 2 + 0 + 0 + 12 Be 5/2 − 12 C GT- ν 0 + -30 3 + 0.8 0 + 1 + 4 He 2 + GT-AA 5/2 − 1 + 6 He 4 + 8 He 2 + 7/2 + F- ν 7/2 − 4 + 6 Li 3 + 5/2 + 1 + 0.6 1/2 − 5/2 − T- ν -40 2 + 1 + 7/2 − 3 + 3/2 − 1/2 − F-NN 3 + 2 + 1 + 7/2 − 3/2 − 7 Li GT- ππ 2 + 4 + 0.4 3/2 − 2 + 3 + -50 9 Li GT- π N 3 + Energy (MeV) 1 + 3/2 + 4 + 8 Li 2 + T- ππ 1 + 5/2 + 3,2 + -1 ] 2 + 0 + 0.2 T- π N 1 + 0 + C(r) [fm Argonne v 18 1/2 − 3 + -60 8 Be 2 + 5/2 − 2 + 2 + 1/2 + with Illinois-7 1 + 0 0 + 3/2 − 1 + -70 3 + GFMC Calculations 9 Be 10 Be -0.2 10 B 24 November 2012 -80 -0.4 0 + AV18 -90 AV18 -0.6 0 + S. Pastore et al. PRC 97, 014606 (2018) +IL7 Expt. J. Carlson et al. RMP 87, 1067 (2015) 12 C -100 -0.8 0 2 4 6 0 2 4 6 r [fm] r [fm] 2.8 -2 -2 PNM 2.4 � � -4 -4 PSR J0348+0432 2.0 -6 -6 PSR J1614-2230 � N + � NN (II) E/A (MeV) � � 1.6 M [M 0 ] -8 -8 Exp 1.2 -10 -10 � N + � NN (I) LO � NLO 0.8 -12 -12 N 2 LO E τ τ (b) R 0 = 1.2 fm -14 -14 0.4 � N N 2 LO E1 13 D. Lonardoni et al. PRL 120, 122502 (2018) D. Lonardoni et al. PRL 114, 092301 (2015) R [km] r (fm) -16 -16 0.0 3 H 3 H 3 He 3 He 4 He 4 He 6 He 6 He 6 Li 6 Li 12 C 12 C 16 O 16 O 11 12 13 14 15 R [km]

  8. Lepton-nucleus scattering Schematic representation of the inclusive cross section as a function of the energy loss. Courtesy of Saori Pastore

  9. Lepton-nucleus scattering The inclusive cross section of the process in which a lepton scatters o ff a nucleus can be written in terms of five response functions ` 0 | Ψ f i d σ / [ v 00 R 00 + v zz R zz � v 0 z R 0 z γ , Z, W ± dE ` 0 d Ω ` + v xx R xx ⌥ v xy R xy ] • In the electromagnetic case only the longitudinal and the transverse response functions contribute | Ψ 0 i ` • The response functions contain all the information on target structure and dynamics X h Ψ 0 | J † R αβ ( ω , q ) = α ( q ) | Ψ f ih Ψ f | J β ( q ) | Ψ 0 i δ ( ω � E f + E 0 ) f • They account for initial state correlations, final state correlations and two-body currents + =

  10. Lepton-nucleus scattering • At low momentum transfer the space resolution of the lepton becomes much larger than the average NN separation distance ( ∼ 1.5 fm). • In this regime the interaction involves many nucleons long-range correlations ← λ ∼ q − 1 → c f X | Ψ f i = 1 p, 1 h | Ψ 1 p 1 h i d • The giant dipole resonance is a manifestation of long-range correlations + −

  11. Lepton-nucleus scattering • At (very) large momentum transfer, scattering o ff a nuclear target reduces to the sum of scattering processes involving bound nucleons short-range correlations. | Ψ f i ' | p 1 i ⌦ | Ψ f i A − 1 | Ψ f i ' | p 1 , p 2 i ⌦ | Ψ f i A − 2 • Relativistic e ff ects play a major role and need to be accounted for along with nuclear correlations (Non trivial interplay between them) • Resonance production and deep inelastic scattering also need to be accounted for

  12. <latexit sha1_base64="wnLvSs9vVDQ4SOet/Eh6fyoJs+o=">ACAHicdVDLSgNBEJyNrxhfq14EL4NB8CBhN4omt6AXjxFcE0himJ10kiGzs8vMrBDW9eKvePGg4tXP8ObfOHkIPgsaiqpurv8iDOlHefdyszMzs0vZBdzS8srq2v2+salCmNJwaMhD2XdJwo4E+BpjnUIwk8DnU/MHpyK9dg1QsFBd6GErID3BuowSbaS2vXVzlbhOmjRlgE8g3Y+ipiSix6Ft51CsVxyDsr4N3ELzh5NEW1b81OyGNAxCacqJUw3Ui3UqI1IxySHPNWEFE6ID0oGoIAGoVjL+IMW7RungbihNCY3H6teJhARKDQPfdAZE9VPbyT+5TVi3S21EiaiWIOgk0XdmGMd4lEcuMkUM2HhAqmbkV0z6RhGoTWs6E8Pkp/p94xUK54J4f5itH0zSyaBvtoD3komNUQWeoijxE0S26R4/oybqzHqxn62XSmrGmM5voG6zXDwSQls4=</latexit> <latexit sha1_base64="wnLvSs9vVDQ4SOet/Eh6fyoJs+o=">ACAHicdVDLSgNBEJyNrxhfq14EL4NB8CBhN4omt6AXjxFcE0himJ10kiGzs8vMrBDW9eKvePGg4tXP8ObfOHkIPgsaiqpurv8iDOlHefdyszMzs0vZBdzS8srq2v2+salCmNJwaMhD2XdJwo4E+BpjnUIwk8DnU/MHpyK9dg1QsFBd6GErID3BuowSbaS2vXVzlbhOmjRlgE8g3Y+ipiSix6Ft51CsVxyDsr4N3ELzh5NEW1b81OyGNAxCacqJUw3Ui3UqI1IxySHPNWEFE6ID0oGoIAGoVjL+IMW7RungbihNCY3H6teJhARKDQPfdAZE9VPbyT+5TVi3S21EiaiWIOgk0XdmGMd4lEcuMkUM2HhAqmbkV0z6RhGoTWs6E8Pkp/p94xUK54J4f5itH0zSyaBvtoD3komNUQWeoijxE0S26R4/oybqzHqxn62XSmrGmM5voG6zXDwSQls4=</latexit> <latexit sha1_base64="wnLvSs9vVDQ4SOet/Eh6fyoJs+o=">ACAHicdVDLSgNBEJyNrxhfq14EL4NB8CBhN4omt6AXjxFcE0himJ10kiGzs8vMrBDW9eKvePGg4tXP8ObfOHkIPgsaiqpurv8iDOlHefdyszMzs0vZBdzS8srq2v2+salCmNJwaMhD2XdJwo4E+BpjnUIwk8DnU/MHpyK9dg1QsFBd6GErID3BuowSbaS2vXVzlbhOmjRlgE8g3Y+ipiSix6Ft51CsVxyDsr4N3ELzh5NEW1b81OyGNAxCacqJUw3Ui3UqI1IxySHPNWEFE6ID0oGoIAGoVjL+IMW7RungbihNCY3H6teJhARKDQPfdAZE9VPbyT+5TVi3S21EiaiWIOgk0XdmGMd4lEcuMkUM2HhAqmbkV0z6RhGoTWs6E8Pkp/p94xUK54J4f5itH0zSyaBvtoD3komNUQWeoijxE0S26R4/oybqzHqxn62XSmrGmM5voG6zXDwSQls4=</latexit> <latexit sha1_base64="wnLvSs9vVDQ4SOet/Eh6fyoJs+o=">ACAHicdVDLSgNBEJyNrxhfq14EL4NB8CBhN4omt6AXjxFcE0himJ10kiGzs8vMrBDW9eKvePGg4tXP8ObfOHkIPgsaiqpurv8iDOlHefdyszMzs0vZBdzS8srq2v2+salCmNJwaMhD2XdJwo4E+BpjnUIwk8DnU/MHpyK9dg1QsFBd6GErID3BuowSbaS2vXVzlbhOmjRlgE8g3Y+ipiSix6Ft51CsVxyDsr4N3ELzh5NEW1b81OyGNAxCacqJUw3Ui3UqI1IxySHPNWEFE6ID0oGoIAGoVjL+IMW7RungbihNCY3H6teJhARKDQPfdAZE9VPbyT+5TVi3S21EiaiWIOgk0XdmGMd4lEcuMkUM2HhAqmbkV0z6RhGoTWs6E8Pkp/p94xUK54J4f5itH0zSyaBvtoD3komNUQWeoijxE0S26R4/oybqzHqxn62XSmrGmM5voG6zXDwSQls4=</latexit> Moderate momentum-transfer regime • At moderate momentum transfer, the inclusive cross section can be written in terms of the response functions X h Ψ 0 | J † R αβ ( ω , q ) = α ( q ) | Ψ f ih Ψ f | J β ( q ) | Ψ 0 i δ ( ω � E f + E 0 ) f • Both initial and final states are eigenstates of the nuclear Hamiltonian H | Ψ 0 i = E 0 | Ψ 0 i H | Ψ f i = E f | Ψ f i • As for the electron scattering on 12 C | 10 Be , pp i | 12 C ∗ i , | 11 B , p i , | 11 C , n i , | 10 B , pn i , | 10 B , pp i . . . • Relativistic corrections are included in the current operators and in the nucleon form factors

  13. Integral transform techniques • The integral transform of the response function are generally defined as Z E αβ ( σ , q ) ≡ d ω K ( σ , ω ) R αβ ( ω , q ) • Using the completeness of the final states, they can be expressed in terms of ground-state expectation values E αβ ( σ , q ) = h Ψ 0 | J † α ( q ) K ( σ , H � E 0 ) J β ( q ) | Ψ 0 i K

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend