quantum metrology gets real
play

Quantum metrology gets real Konrad Banaszek Faculty of Physics, - PowerPoint PPT Presentation

Quantum metrology gets real Konrad Banaszek Faculty of Physics, University of Warsaw, Poland All-Ireland Conference on Quantum Technologies Maynooth University I June 2016 Phase measurement N photons photons photons Estimation procedure


  1. Quantum metrology gets real Konrad Banaszek Faculty of Physics, University of Warsaw, Poland All-Ireland Conference on Quantum Technologies Maynooth University I June 2016

  2. Phase measurement N photons photons photons

  3. Estimation procedure Example: around operating point: Estimate Actual Measurement value result

  4. Fisher information Cramér-Rao bound: for unbiased estimators Shot noise limit : for independently used photons

  5. T wo-photon interferometry & Coincidence between ports: Double count on one port:

  6. Experiment J. G. Rarity et al., Phys. Rev. Lett. 65 , 1348 (1990) Two photons sent one-by-one Two-photon (shot noise limit): interference:

  7. General picture Preparation Detection For any measurement where Quantum Fisher information reads

  8. Heisenberg limit – photon number uncertainty in the sensing arm – precision of phase estimation N photons 0 N N independently used Maximum possible photons (shot noise limit): defines the Heisenberg limit : J. J. Bollinger et al. , Phys. Rev. A 54 , R4649(R) (1996) J. P. Dowling, Phys. Rev. A 57 , 4736 (1998)

  9. N00N state Preparation No photon lost: One photon lost: More photons… M.A. Rubin and S. Kaushik, Phys. Rev. A 75 , 053805 (2007) G. Gilbert, M. Hamrick, and Y.S. Weinstein, J. Opt. Soc. Am. B 25 , 1336 (2008)

  10. Numerical optimisation One-arm losses Two-arm losses Optimal U. Dorner, R. Demkowicz-Dobrza ński et al., Phys. Rev. Lett. 102 , 040403 (2009) Chopped n00n R. Demkowicz-Dobrza ński , U. Dorner et al. , Phys. Rev. A 80 , 013825 (2009) N00N state

  11. T wo-photon experiment Component weights

  12. Phase uncertainty M. Kacprowicz et al., Nature Photon. 4 , 357 (2010)  Shot noise  Optimal  2-NOON

  13. Scaling Sample transmission 100% • 80% • 60% • 90% • Phase uncertainty shot noise ultimate quantum limit Number of photons (probes) N K.Banaszek, R. Demkowicz-Dobrza ński , and I. Walmsley, Nature Photon. 3 , 673 (2009)

  14. General picture R. Demkowicz- Dobrzański, J. Kołodyński, and M. Guţă , Nature Commun. 3 , 1063 (2012) Actual value

  15. T wo-arm losses Preparation For a quantum state with average photon number Shot noise limit Ultimate quantum limit *Assuming no external phase reference is available: M. Jarzyna and R. Demkowicz-Dobrza ński , Phys. Rev. A 85 , 011801(R) (2012)

  16. Shot noise revisited C. M. Caves, Phys. Rev. D 23 , 1693 (1981) photons Strong laser beams –

  17. Gravitational wave detection J. Abadie et al. (The LIGO Scientific Collaboration), Nature Phys. 7 , 962 (2011) GEO600

  18. Noise analysis R. Demkowicz- Dobrzański, K. Banaszek, and R. Schnabel, Phys. Rev. A 88 , 041802(R) (2013) When most power comes from the laser beam Shot noise limit 10dB squeezing (implemented) 16dB squeezing and ultimate bound

  19. Optimality of squeezed states R. Demkowicz- Dobrzański, K. Banaszek, and R. Schnabel, Phys. Rev. A 88 , 041802(R) (2013)

  20. Operating point 1 1

  21. Partial spectral distinguishability Fisher information shot noise limit

  22. One- and two-photon interference

  23. Transverse displacement Fisher information

  24. Partial transverse overlap Coherent superposition Fisher information

  25. Coherent superposition No postselection or any attempt to resolve the spectral degree of freedom inducing !!!!!

  26. Optimal measurement

  27. Projection basis Optimal two-photon Spatial modes projections

  28. Enhancement Relative uncertainty Spatial overlap optimized No spatial for individual operating displacement point

  29. Shot-by-shot imaging R. Chrapkiewicz, W. Wasilewski, and K.Banaszek, Opt. Lett. 39 , 5090 (2014) M. Jachura and R. Chrapkiewicz, Opt. Lett. 40 , 1540 (2015)

  30. Imaging experiment

  31. Coincidence events

  32. Transverse displacement

  33. Coincidence events M. Jachura et al. , Nature Commun. 7 , 11411 (2016)

  34. Relative uncertainty M. Jachura et al. , Nature Commun. 7 , 11411 (2016) locally optimized spatial displacement

  35. 2 + 1 photons M. Jachura et al. , Nature Commun. 7 , 11411 (2016)

  36. Conclusions Benefit analysis of quantum metrology needs • to take into account noise and imperfections Even in noisy scenarios quantum enhancement • is possible – and worthwhile! (Nearly) optimal operation can be achieved with • (relatively) modest means Applications where fixed-scale enhancement • is useful / critical Qubits live in a vast physical space – explore! •

  37. Acknowledgements Uwe Dorner Radosław Chrapkiewicz Brian Smith Rafa ł Demkowicz- Dobrzański Jeff Lundeen Michał Jachura Ian A. Walmsley Marcin Jarzyna University of Oxford Jan Kołodyński Wojciech Wasilewski Mădălin Guţă Uniwersytet Warszawski University of Nottingham Marcin Kacprowicz Roman Schnabel Uniwersytet Mikołaja Kopernika Universität Hannover w Toruniu

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend