quantum information set decoding algorithms
play

Quantum Information Set Decoding Algorithms Ghazal Kachigar - PowerPoint PPT Presentation

Quantum Information Set Decoding Algorithms Ghazal Kachigar Jean-Pierre Tillich Institut de Math ematiques de Bordeaux, Universit e de Bordeaux Inria, EPI SECRET PQCrypto, Utrecht - 27/06/2017 Ghazal Kachigar , Jean-Pierre Tillich


  1. Quantum Information Set Decoding Algorithms Ghazal Kachigar Jean-Pierre Tillich Institut de Math´ ematiques de Bordeaux, Universit´ e de Bordeaux Inria, EPI SECRET PQCrypto, Utrecht - 27/06/2017 Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  2. A Debriefing on Code-based Cryptography Code-based Cryptography Code-based Cryptography : good candidate for quantum-resistant cryptography - H : full-rank ( n − k ) × n binary matrix 2 : Hc T = 0 } code of length n and dimension n − k - C = { c ∈ F n - w : public parameter Syndrome Decoding Problem (NP-hard) Given s = He T , find e of weight w . Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  3. A Debriefing on Code-based Cryptography Information Set Decoding Best classical generic decoding algorithms rely on the Information Set Decoding (ISD) technique. Correcting an error of weight w in a code of length n and dimension k using an ISD algorithm has cost ˜ O (2 α ( k n , w n ) n ). Author(s) Year 0 ≤ R ≤ 1 α ( R, ω GV ) max Prange 1962 0.1207 Dumer 1991 0.1164 May, Meurer and Thomae 2011 0.1114 Becker, Joux, May, Meurer 2012 0.1019 May, Ozerov 2015 0.0966 ω GV : Gilbert-Varshamov bound Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  4. A Debriefing on Code-based Cryptography Code-based Cryptography and Quantum Computers Question [Overbeck & Sendrier, 2009] How much better can we do if we have access to quantum computers ? One tool: Grover’s search algorithm Unstructured Search Problem Given a set E and a function f : E → { 0 , 1 } , find an x ∈ E such that f ( x ) = 1. How many queries to f are needed to solve this problem? ε : proportion of elements x of E such that f ( x ) = 1 T f : average execution time of f Grover’s search algorithm make O ( 1 √ ε ) queries and this is optimal . Time complexity of Grover Search: O ( T f √ ε ) Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  5. Prange’s Algorithm (1962) and Bernstein’s Algorithm (2009) (1/2) Recall: Syndrome Decoding Problem Given s = He T where H is a full-rank ( n − k ) × n binary matrix, find e of Hamming weight w . Main idea : if the w errors are among n − k known positions, problem reduces to solving a linear system in n − k variables. Prange’s algorithm (1) loop over possible sets S of size n − k (2) solve linear system for each S to get an error vector (3) check if its Hamming weight is w � � ( n − k w ) Proportion p of good sets S : Ω . ( n w ) Bernstein’s algorithm: use Grover Search to find a good set S . Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  6. Prange’s Algorithm (1962) and Bernstein’s Algorithm (2009) (2/2) Complexity of Prange’s algorithm � � ( n w ) 1 Cost of (1): p = O ( n − k w ) Cost of (2) and (3): polynomial in n Total cost: � 2 α Prange ( R,ω ) n � ˜ O △ = k where R n △ = w ω n � ω � α Prange ( R, ω ) = H 2 ( ω ) − (1 − R ) H 2 1 − R Complexity of Bernstein’s algorithm 1 Cost of (1) becomes √ p Thus α Bernstein = α Prange 2 Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  7. Our results Question [Overbeck & Sendrier, 2009] How much better can we do if we have access to quantum computers ? Author(s) 0 ≤ R ≤ 1 α ( R, ω GV ) max Prange (1962) 0.1207 Bernstein (2009) 0.06035 Our first algorithm (SSQW) 0.05970 Our second algorithm (MMTQW) 0.05869 ω GV : Gilbert-Varshamov bound New tool: Quantum Walk algorithms Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  8. Quantum Walk Graph Search Problem Graph Search Problem Given a graph G = ( V , E ) and a set of vertices M ⊂ V , called the set of marked elements , find an x ∈ M . Grover Search: graph search on K n with 1 M = f . Useful point of view for problems with slightly more structure (less edges). Can be solved using a Random Walk (discrete-time Markov chain). Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  9. Quantum Walk Random Walk Pseudo-code Algorithm 1: RandomWalk Input : G = ( E , V ), M ⊂ V , initial probability distribution v Output : An element e ∈ M Setup : Sample a vertex x according to v and initialise the data structure. repeat Check : if current vertex x is marked then return x else repeat Update : Take one step of the random walk and update data structure accordingly. until x is sampled according to a distribution close enough to the uniform distribution Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  10. Quantum Walk Complexity T s : cost of Setup T c : cost of Check T u : cost of Update | M | ε : | V | (proportion of marked elements) δ : spectral gap (a parameter of the graph) Cost of Quantum Walk [Magniez, Nayak, Roland & Santha 2007] � � 1 1 T s + T c + δ T u √ ε √ Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  11. Information Set Decoding Generalised ISD Algorithms Recall : Prange’s algorithm looked for sets S of size ( n − k ) where all error positions would be. Idea : Take S to be of size n − k − ℓ and allow p of the w errors to be outside S k + ℓ = ( p )( n − k − ℓ w − p ) △ There are P ℓ,p such sets. ( n w ) There exists U such that � H ′ � 0 ℓ UH = H ” I n − k − ℓ To find e , solve a new Syndrome Decoding Problem s ′ = H ′ e ′ T where e ′ is of weight p (cost T ). Cost of Generalised Quantum ISD Algorithms � � √ T O P ℓ,p Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  12. Information Set Decoding k -sum Problem and Dumer’s algorithm k -sum Problem G : an Abelian group, E : an arbitrary set, f : E → G g : E k → { 0 , 1 } , k subsets V 0 , V 1 , . . . , V k − 1 of E , S an element of G Find a solution ( v 0 , . . . , v k − 1 ) ∈ V 0 × · · · × V k − 1 such that (i) f ( v 0 ) + f ( v 1 ) · · · + f ( v k − 1 ) = S (subset-sum condition); (ii) g ( v 0 , . . . , v k − 1 ) = 0 Dumer’s algorithm F ℓ 2 , E = F k + ℓ , f ( v ) = H ′ v T = G 2 : e 0 ∈ F ( k + ℓ ) / 2 { ( e 0 , 0 ( k + ℓ ) / 2 ) ∈ F k + ℓ = , | e 0 | = p/ 2 } V 0 2 2 : e 1 ∈ F ( k + ℓ ) / 2 { (0 ( k + ℓ ) / 2 , e 1 ) ∈ F k + ℓ = , | e 1 | = p/ 2 } V 1 2 2 g ( v 0 , v 1 ) = 0 if and only if the e resulting from e ′ = v 0 + v 1 is of weight w . Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  13. Information Set Decoding Dumer’s algorithm Dumer’s algorithm F ℓ 2 , E = F k + ℓ , f ( v ) = H ′ v T G = 2 : e 0 ∈ F ( k + ℓ ) / 2 { ( e 0 , 0 ( k + ℓ ) / 2 ) ∈ F k + ℓ V 0 = , | e 0 | = p/ 2 } 2 2 : e 1 ∈ F ( k + ℓ ) / 2 { (0 ( k + ℓ ) / 2 , e 1 ) ∈ F k + ℓ V 1 = , | e 1 | = p/ 2 } 2 2 g ( v 0 , v 1 ) = 0 if and only if the e resulting from e ′ = v 0 + v 1 is of weight w . Dumer’s algorithm solves the 2-sum problem using collision search in expected time | V 0 | + | V 1 | + | V 0 |·| V 1 | . | G | Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  14. Information Set Decoding Shamir-Schroeppel’s algorithm Suppose G = G 0 × G 1 where | G 0 | = Θ( | G 1 | ) = Θ( | G | 1 / 2 ), and let π i : g = ( g 0 , g 1 ) �→ g i . Shamir-Schroeppel Algorithm Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  15. Information Set Decoding Shamir-Schroeppel’s algorithm Suppose G = G 0 × G 1 where | G 0 | = Θ( | G 1 | ) = Θ( | G | 1 / 2 ), and let π i : g = ( g 0 , g 1 ) �→ g i . Shamir-Schroeppel Algorithm Need to do this for every r ∈ G 1 . Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  16. Quantum Information Set Decoding Quantum Shamir-Schroeppel (SSQW) (1/3) [Bernstein, Jeffery, Lange & Meurer 2013] : Quantum Shamir-Schroeppel algorithm for the subset sum problem �� � First idea: use Grover Search to find r in time O | G 1 | . Second idea: use a Quantum Walk algorithm to look for e . Johnson graphs J ( V, U ) Nodes: subsets U of size U of a set V of size V Edges: ( U , U ′ ) is an edge iff | U ∩ U ′ | = U − 1 � 1 V � Spectral gap: δ = U ( V − R ) = Ω U Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

  17. Quantum Information Set Decoding Quantum Shamir-Schroeppel (SSQW) (2/3) Quantum walk on J ( V, U ) × J ( V, U ) × J ( V, U ) × J ( V, U ) where V = | V ij | . � � 1 1 Cost: T s + T c + δ T u √ ε √ Cost of the quantum walk � 1 � δ : Ω . U � U � 4 . ε : V Setup time T s : O ( U ). Check time T c : O (1). Update time T u : O (log U ) under the hypotheses | G 1 | = Θ( U ) , | G | = Θ( U 2 ) √ � V � � 2 � �� Cost : O U + 1 + U log U U This is optimal and equal to ˜ O ( U ) for U = V 4 / 5 . Ghazal Kachigar , Jean-Pierre Tillich Quantum Information Set Decoding Algorithms

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend