quantum chemistry regression
play

Quantum Chemistry Regression x = { z k (charge) , r k (position) } k - PowerPoint PPT Presentation

Quantum Chemistry Energy Regression with Scattering Transforms Matthew Hirn, Stphane Mallat cole Normale Suprieure Nicolas Poilvert Penn-State 1 Quantum Chemistry Regression x = { z k (charge) , r k (position) } k d R 4 d


  1. Quantum Chemistry Energy Regression with Scattering Transforms Matthew Hirn, Stéphane Mallat École Normale Supérieure Nicolas Poilvert Penn-State 1

  2. Quantum Chemistry Regression x = { z k (charge) , r k (position) } k ≤ d ∈ R 4 d without quantum chemistry: very fast. 2

  3. Linear Regression 3

  4. Energy Properties • Invariant to permutations of the index k . 4

  5. Overview • Coulomb kernel representations • Density functional approach to representation • From Fourier to wavelet energy regressions • Wavelet scattering dictionaries: deep networks without learning • Numerical energy regression results • Relations with image classification and deep networks 5

  6. Coulomb Kernel 6

  7. Density Functional Theory • Computes the energy of a molecule x from its electronic probability density ρ x ( u ) for u ∈ R 3 Organic molecules with Hydrogne, Carbon H 4 C 6 OS H 9 C 7 NO Nitrogen, Oxygen Sulfur, Chlorine H 3 C 6 NO 2 H 9 C 8 N 7

  8. Density Functional Theory Kohn-Sham model: Z ρ ( u ) ρ ( v ) ρ ( u ) V ( u ) + 1 Z E ( ρ ) = T ( ρ ) + | u − v | dudv + E xc ( ρ ) 2 electron-electron Kinetic Exchange Molecular electron-nuclei Coulomb repulsion energy correlat. energy energy attraction At equilibrium: 8

  9. Coulomb Interactions in Fourier • Coulomb potential energy: Diagonalized in Fourier: 9

  10. Coulomb in Fourier Dictionary ω 2 ω 1 10

  11. Large Scale Instabilities 11

  12. Coulomb Multiscale Factorizations • Multiscale regroupment of interactions: For an error ✏ , interactions can be reduced to O (log ✏ ) groups ( Rocklin, Greengard) Fast multipoles 12

  13. Scale separation with Wavelets rotated and dilated: ω 2 real parts imaginary parts ω 1 13

  14. Wavelet Interference for Densities 14

  15. Sparse Wavelet Regression ω 2 ω 1 Theorem: For any ✏ > 0 there exists wavelets with 15

  16. Dictionaries for Quantum Energies 16

  17. Atomization Density Approximate density ˜ ρ x ( u ) Electronic density ρ x ( u ) 17

  18. Sparse Linear Regressions 18

  19. x Fourier and Wavelets Regressions Regression: 8 Fourier 7 Wavelet Scattering �� 6 Coulomb | 5 − 4 | � 3 � 2 1 log 2 M 0 1 2 3 4 5 6 7 8 9 10 19 Model Complexity log ( M )

  20. Energy Regression Results 20

  21. Wavelet Dictionary Rotations θ 1 | ρ ∗ ψ j 1 , θ 1 ( u ) | Scales j 1 ρ ( u ) 21

  22. Wavelet Dictionary Rotations θ 1 Scales j 1 | ρ ∗ ψ j 1 , θ 1 ( u ) | 22

  23. Scattering Dictionary Rotations θ 1 Recover translation variability: | ρ ∗ ψ j 1 , θ 1 | ∗ ψ j 2 , θ 2 ( u ) Recover rotation variability: | ρ ∗ ψ j 1 , · ( u ) | ~ ψ l 2 ( θ 1 ) Scales j 1 | ρ ∗ ψ j 1 , θ 1 ( u ) | 23

  24. Scattering Dictionary Rotations θ 1 Recover translation variability: | ρ ∗ ψ j 1 , θ 1 | ∗ ψ j 2 , θ 2 ( u ) Recover rotation variability: | ρ ∗ ψ j 1 , · ( u ) | ~ ψ l 2 ( θ 1 ) Scales j 1 Combine to recover roto-translation variabiltiy: || ρ ∗ ψ j 1 , · | ∗ ψ j 2 , θ 2 ( u ) ~ ψ l 2 ( θ 1 ) | | ρ ∗ ψ j 1 , θ 1 ( u ) | 24

  25. Scattering Second Order | ρ ∗ ψ j 1 , θ 1 ( u ) | , j 1 fixed || ρ ∗ ψ j 1 , · | ∗ ψ j 2 , θ 2 ( u ) ~ ψ l 2 ( θ 1 ) | j 1 , l 2 fixed S c a l e s j 2 Rotations θ 2 25

  26. Scattering Dictionary 26

  27. Scattering Regression x Regression: 8 Fourier 7 Wavelet Scattering �� 6 Coulomb | 5 − 4 | � 3 � 2 1 log 2 M 0 1 2 3 4 5 6 7 8 9 10 27 Model Complexity log ( M )

  28. Quantum Chemistry Energy Regression Results 28

  29. From 2D to 3D Scattering M . Eickenberg , M . Hirn ω 2 ω 1 29

  30. Reconstruction from Scattering Joan Bruna Original images of N 2 pixels: Order m = 2 Reconstruction from { k x k 1 , k x ? λ 1 k 1 , k | x ? λ 1 | ? λ 2 k 1 } : O (log 2 2 N ) coe ff .

  31. Ergodic Texture Reconstructions Joan Bruna Original Textures 2D Turbulence Second order Gaussian Scattering: O (log N 2 ) moments E ( | x ? λ 1 | ) , E ( || x ? λ 1 | ? λ 2 | )

  32. Digit Classification: MNIST Joan Bruna y = f ( x ) Linear Classifier S J x x Classification Errors LeCun et. al.

  33. Complex Image Classification CalTech 101 data-basis: Edouard Oyallon Arbre de Joshua Castore Ancre Metronome Nénuphare Bateau S J x Linear Classif. x y Rigid Mvt. computes invariants Classification Accuracy Data Basis Deep-Net Scat.-2 CalTech-101 85% 80% CIFAR-10 90% 80%

  34. Conclusion • Quantum energy regression involves generic invariants to rigid movements, stability to deformations, multiscale interactions • These properties require scale separations, hence wavelets. • Multilayer wavelet scattering create large number of invariants • Equivalent to deep networks with predefined wavelet filters • Knowing physics provides the invariants: can avoid learning representations 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend