quantitative analysis of randomized distributed systems
play

Quantitative Analysis of Randomized Distributed Systems and - PowerPoint PPT Presentation

Quantitative Analysis of Randomized Distributed Systems and Probabilistic Automata Christel Baier Technische Universit at Dresden joint work with Nathalie Bertrand Frank Ciesinski Marcus Gr oer 1 / 124 Probability elsewhere int-01


  1. Randomized mutual exclusion protocol mdp-05 MDP n 1 n 2 n 1 n 2 n 1 n 2 request 2 request 2 request 2 request 1 request 1 request 1 release 2 release 2 release 2 release 1 release 1 release 1 w 1 n 2 w 1 n 2 w 1 n 2 n 1 w 2 n 1 w 2 n 1 w 2 request 2 request 2 request 2 request 1 request 1 request 1 e e e n n n r r r e e 1 1 1 e t t t t e t t e e n n n r r r e e e 2 2 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 r r r e e e e 1 e 1 e 1 l l l c 1 n 2 c 1 n 2 c 1 n 2 e s s s n 1 c 2 n 1 c 2 n 1 c 2 e e a a a a a a e e e s s s l l l e 2 e 2 e 2 1 1 1 1 1 1 e e e r r r toss a r r 2 2 2 toss a toss a 2 2 2 r e e e t t t q q q 1 1 1 s s s e u u u e e coin coin coin e e u u u e q q s s s q t t t e e e r r r 2 2 2 c 1 w 2 c 1 w 2 c 1 w 2 w 1 c 2 w 1 c 2 w 1 c 2 • interleaving of the request operations • competition if both processes are waiting • randomized arbiter tosses a coin if both are waiting 21 / 124

  2. Randomized mutual exclusion protocol mdp-05 MDP n 1 n 2 n 1 n 2 n 1 n 2 request 2 request 2 request 2 request 1 request 1 request 1 release 2 release 2 release 2 release 1 release 1 release 1 w 1 n 2 w 1 n 2 w 1 n 2 n 1 w 2 n 1 w 2 n 1 w 2 request 2 request 2 request 2 request 1 request 1 request 1 e e e n n n r r r e e 1 1 1 e t t t t e t t e e n n n r r r e e e 2 2 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 r r r e e e e 1 e 1 e 1 l l l c 1 n 2 c 1 n 2 c 1 n 2 e s s s n 1 c 2 n 1 c 2 n 1 c 2 e e a a a a a a e e e s s s l l l e 2 e 2 e 2 1 1 1 1 1 1 e e e r r r toss a r r 2 2 2 toss a toss a 2 2 2 r e e e t t t q q q 1 1 1 s s s e u u u e e coin coin coin e e u u u e q q s s s q t t t e e e r r r 2 2 2 c 1 w 2 c 1 w 2 c 1 w 2 c 1 w 2 c 1 w 2 c 1 w 2 w 1 c 2 w 1 c 2 w 1 c 2 w 1 c 2 w 1 c 2 w 1 c 2 • interleaving of the request operations • competition if both processes are waiting • randomized arbiter tosses a coin if both are waiting 22 / 124

  3. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers 23 / 124

  4. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S + − D : S + − D : S + − • → Act s.t. → Act → Act action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n 24 / 124

  5. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S + − D : S + − D : S + − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n • each scheduler induces an infinite Markov chain β β β 1 2 2 2 1 1 α α α 3 3 3 3 3 3 σ σ σ α α α γ γ γ β 1 1 1 β β δ δ δ 2 2 2 3 3 3 3 3 3 δ δ δ γ γ γ σ σ σ MDP α 2 α 2 α 2 1 1 1 σ σ σ 3 3 3 3 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 / 124

  6. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S + − D : S + − D : S + − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n • each scheduler induces an infinite Markov chain � � �    yields a notion of probability measure Pr D Pr D Pr D on measurable sets of infinite paths 26 / 124

  7. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S + − D : S + − D : S + − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n • each scheduler induces an infinite Markov chain � � �    yields a notion of probability measure Pr D Pr D Pr D on measurable sets of infinite paths typical task: given a measurable path event E E , E ∗ ∗ ∗ check whether E E E holds almost surely, i.e., Pr D ( E ) = 1 Pr D ( E ) = 1 Pr D ( E ) = 1 for all schedulers D D D 27 / 124

  8. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S + − D : S + − D : S + − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n • each scheduler induces an infinite Markov chain � � �    yields a notion of probability measure Pr D Pr D Pr D on measurable sets of infinite paths typical task: given a measurable path event E E , E ∗ ∗ ∗ check whether E E E holds almost surely ∗ ∗ ∗ compute the worst-case probability for E E E , i.e., Pr D ( E ) Pr D ( E ) Pr D ( E ) Pr D ( E ) Pr D ( E ) Pr D ( E ) sup sup sup or inf inf inf D D D D D D 28 / 124

  9. Quantitative analysis of MDP mdp-15 given: MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) with initial state s 0 s 0 s 0 ω -regular path event E ω ω E , E e.g., given by an LTL formula Pr M compute Pr M Pr M Pr D ( s 0 , E ) Pr D ( s 0 , E ) Pr D ( s 0 , E ) max ( s 0 , E ) = sup task: max ( s 0 , E ) = sup max ( s 0 , E ) = sup D D D 29 / 124

  10. Quantitative analysis of MDP mdp-15 given: MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) with initial state s 0 s 0 s 0 ω ω ω -regular path event E E , E e.g., given by an LTL formula Pr M compute Pr M Pr M Pr D ( s 0 , E ) Pr D ( s 0 , E ) Pr D ( s 0 , E ) max ( s 0 , E ) = sup task: max ( s 0 , E ) = sup max ( s 0 , E ) = sup D D D x s = Pr M compute x s = Pr M x s = Pr M method: max ( s , E ) max ( s , E ) for all s ∈ S max ( s , E ) s ∈ S s ∈ S via graph analysis and linear program [Vardi/Wolper’86] [Courcoubetis/Yannakakis’88] [Bianco/de Alfaro’95] [Baier/Kwiatkowska’98] 30 / 124

  11. probabilistic “bad behaviors” system 31 / 124

  12. probabilistic “bad behaviors” system M MDP M M 32 / 124

  13. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A 33 / 124

  14. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A quantitative analysis in the product-MDP M × A M × A M × A � � � � � � � s , init s � , acceptance Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , max max max cond. of A A A 34 / 124

  15. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A maximal probabilility for reaching an quantitative analysis accepting end in the product-MDP M × A M × A M × A component � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 35 / 124

  16. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A maximal probabilility for reaching an probabilistic reachability analysis accepting end in the product-MDP M × A M × A M × A component linear program � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 36 / 124

  17. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A probabilistic reachability analysis polynomial in the product-MDP M × A M × A M × A in |M| · |A| |M| · |A| |M| · |A| linear program � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 37 / 124

  18. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M 2exp deterministic automaton A A A probabilistic reachability analysis polynomial in the product-MDP M × A M × A M × A in |M| · |A| |M| · |A| |M| · |A| linear program � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 38 / 124

  19. probabilistic “bad behaviors” system state explosion LTL formula ϕ ϕ ϕ problem M MDP M M deterministic automaton A A A probabilistic reachability analysis polynomial in the product-MDP M × A M × A M × A in |M| · |A| |M| · |A| |M| · |A| linear program � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 39 / 124

  20. Advanced techniques for PMC por-01-cs • • • symbolic model checking with variants of BDDs e.g., in PRISM [Kwiatkowska/Norman/Parker] • • • state aggregation with bisimulation e.g., in MRMC [Katoen et al] • • • abstraction-refinement e.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen] PASS [Hermanns/Wachter/Zhang] • • • partial order reduction e.g., in LiQuor [Baier/Ciesinski/Gr¨ oßer] 40 / 124

  21. Advanced techniques for PMC por-01-cs • • • symbolic model checking with variants of BDDs e.g., in PRISM [Kwiatkowska/Norman/Parker] randomized distributed algorithms, communication and multimedia protocols, power management, security, . . . . . . . . . • • • state aggregation with bisimulation e.g., in MRMC [Katoen et al] • • • abstraction-refinement e.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen] PASS [Hermanns/Wachter/Zhang] • • • partial order reduction e.g., in LiQuor [Baier/Ciesinski/Gr¨ oßer] 41 / 124

  22. Advanced techniques for PMC por-01-cs • • • symbolic model checking with variants of BDDs e.g., in PRISM [Kwiatkowska/Norman/Parker] randomized distributed algorithms, communication and multimedia protocols, power management, security, . . . . . . . . . • • • state aggregation with bisimulation e.g., in MRMC [Katoen et al] • • • abstraction-refinement e.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen] PASS [Hermanns/Wachter/Zhang] • • • partial order reduction e.g., in LiQuor [Baier/Ciesinski/Gr¨ oßer] 42 / 124

  23. Partial order reduction por-02 technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990] • attempts to analyze a sub-system by identifying “redundant interleavings” • explores representatives of paths that agree up to the order of independent actions 43 / 124

  24. Partial order reduction por-02 technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990] • attempts to analyze a sub-system by identifying “redundant interleavings” • explores representatives of paths that agree up to the order of independent actions x := x + y � z := z +3 e.g., x := x + y x := x + y � � z := z +3 z := z +3 � �� � � �� � action β β β action α α α α ; β β ; α has the same effect as α ; β α ; β or β ; α β ; α 44 / 124

  25. Partial order reduction por-02 technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990] • attempts to analyze a sub-system by identifying “redundant interleavings” • explores representatives of paths that agree up to the order of independent actions DFS-based on-the-fly generation of a reduced system for each expanded state s s s • choose an appropriate subset Ample ( s ) Ample ( s ) Ample ( s ) of Act ( s ) Act ( s ) Act ( s ) • expand only the α α α -successors of s s for α ∈ Ample ( s ) α ∈ Ample ( s ) α ∈ Ample ( s ) s (but ignore the actions in Act ( s ) \ Ample ( s ) Act ( s ) \ Ample ( s ) Act ( s ) \ Ample ( s )) 45 / 124

  26. Ample-set method [Peled 1993] por-03 given: processes P i P i P i of a parallel system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with transition system T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) task: on-the-fly generation of a sub-system T r T r T r s.t. . . . (A1) stutter condition . . . . . . . . . (A2) dependency condition . . . . . . . . . (A3) cycle condition . . . . . . 46 / 124

  27. Ample-set method [Peled 1993] por-03 given: processes P i P i P i of a parallel system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with transition system T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) task: on-the-fly generation of a sub-system T r T r T r s.t. � π � π r (A1) stutter condition π � π r π � π r (A2) dependency condition by permutations of independent actions (A3) cycle condition π T Each path π π in T T is represented by an “equivalent” π r T r path π r π r in T r T r 47 / 124

  28. Ample-set method [Peled 1993] por-03 given: processes P i P i P i of a parallel system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with transition system T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) task: on-the-fly generation of a sub-system T r T r T r s.t. � π � π r (A1) stutter condition π � π r π � π r (A2) dependency condition by permutations of independent actions (A3) cycle condition π T Each path π π in T T is represented by an “equivalent” π r T r path π r π r in T r T r � � � � � � T T r T T and T r T r satisfy the same stutter-invariant events, e.g., next-free LTL formulas 48 / 124

  29. Ample-set method for MDP por-04 given: processes P i P i P i of a probabilistic system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with MDP-semantics M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) task: on-the-fly generation of a sub-MDP M r M r M r s.t. M r M M r M r and M M have the same extremal probabilities for stutter-invariant events 49 / 124

  30. Ample-set method for MDP por-04 given: processes P i P i P i of a probabilistic system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with MDP-semantics M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) task: on-the-fly generation of a sub-MDP M r M r M r s.t. M For all schedulers D D D for M M there is a scheduler D r D r D r for M r M r s.t. for all measurable, stutter-invariant events E M r E : E Pr D M ( E ) = Pr D r M ( E ) = Pr D r M ( E ) = Pr D r Pr D Pr D M r ( E ) M r ( E ) M r ( E ) � � � � � � M r M M r M r and M M have the same extremal probabilities for stutter-invariant events 50 / 124

  31. Example: ample set method por-08-new s s s β γ γ γ β β α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ T original system T T α α α independent from β β β and γ γ γ 51 / 124

  32. Example: ample set method por-08-new s s s P 1 � P 2 P 1 � P 2 P 1 � P 2 β γ γ γ β β α α α α α α α α α α α α γ γ γ γ γ γ β β β β β β δ δ δ δ δ δ δ δ δ δ δ δ T original system T T action α α α : x := 1 x := 1 x := 1 α α α independent action δ δ δ : from β β and γ β γ γ IF x > 0 x > 0 x > 0 THEN y := 1 y := 1 y := 1 FI 52 / 124

  33. Example: ample set method por-08-new s s s s s s β γ γ γ β β γ γ γ β β β α α α α α α α α α γ γ γ β β β α α α α α α δ δ δ δ δ δ δ δ δ δ δ δ T T r original system T T reduced system T r T r (A1)-(A3) are fulfilled α α α independent from β β β and γ γ γ 53 / 124

  34. Example: ample set method fails for MDP por-08-new s s s s s s β γ γ γ β β γ γ γ β β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β α α α α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ δ δ δ δ δ δ M M r original MDP M M reduced MDP M r M r (A1)-(A3) are fulfilled α α α independent from β β β and γ γ γ 54 / 124

  35. Example: ample set method fails for MDP por-08-new s s s s s s β γ γ γ β β γ γ γ β β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β α α α α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ δ δ δ δ δ δ M M r original MDP M M reduced MDP M r M r Pr M Pr M Pr M max ( s , ♦ green ) = 1 ♦ ♦ ♦ “eventually” max ( s , ♦ green ) = 1 max ( s , ♦ green ) = 1 55 / 124

  36. Example: ample set method fails for MDP por-08-new s s s s s s β γ γ γ β β γ γ γ β β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β α α α α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ δ δ δ δ δ δ M M r original MDP M M reduced MDP M r M r Pr M 2 = Pr M r Pr M Pr M 2 = Pr M r 2 = Pr M r 1 1 1 max ( s , ♦ green ) = 1 > max ( s , ♦ green ) max ( s , ♦ green ) = 1 max ( s , ♦ green ) = 1 > > max ( s , ♦ green ) max ( s , ♦ green ) 56 / 124

  37. Partial order reduction for MDP por-09 extend Peled’s conditions (A1)-(A3) for the ample-sets (A1) stutter condition . . . . . . . . . (A2) dependency condition . . . . . . . . . . . . (A3) cycle condition . . . . . . (A4) probabilistic condition β 1 β 1 β 1 β 2 β 2 β 2 β n β n β n α α α If there is a path s s − − − → → → − − − → . . . → . . . → . . . − − − → → → − − − → → → in M M M s.t. s β 1 , . . . , β n , α / ∈ Ample ( s ) α β 1 , . . ., β n , α / β 1 , . . . , β n , α / ∈ Ample ( s ) ∈ Ample ( s ) and α α is probabilistic then | Ample ( s ) | = 1 | Ample ( s ) | = 1 | Ample ( s ) | = 1. 57 / 124

  38. Partial order reduction for MDP por-09 extend Peled’s conditions (A1)-(A3) for the ample-sets (A1) stutter condition . . . . . . . . . (A2) dependency condition . . . . . . . . . . . . (A3) cycle condition . . . . . . (A4) probabilistic condition β 1 β 1 β 1 β 2 β 2 β 2 β n β n β n α α α If there is a path s s − − − → → → − − − → . . . → . . . → . . . − − − → → → − − − → → → in M M s.t. M s β 1 , . . . , β n , α / ∈ Ample ( s ) α β 1 , . . ., β n , α / β 1 , . . . , β n , α / ∈ Ample ( s ) ∈ Ample ( s ) and α α is probabilistic then | Ample ( s ) | = 1 | Ample ( s ) | = 1 | Ample ( s ) | = 1. M M r If (A1)-(A4) hold then M M and M r M r have the same extremal probabilities for all stutter-invariant properties. 58 / 124

  39. Probabilistic model checking por-ifm-32 probabilistic quantitative system requirements Markov decision LTL \� \� formula ϕ ϕ ϕ \� M process M M (path event) quantitative analysis of M M M against ϕ ϕ ϕ maximal/minimal probability for ϕ ϕ ϕ 59 / 124

  40. Probabilistic model checking, e.g., LiQuor por-ifm-32 modeling language quantitative P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n requirements partial order reduction reduced LTL \� \� formula ϕ ϕ ϕ \� M r MDP M r M r (path event) quantitative analysis of M r M r M r against ϕ ϕ ϕ maximal/minimal probability for ϕ ϕ ϕ 60 / 124

  41. Probabilistic model checking, e.g., LiQuor por-ifm-32a modeling language quantitative P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n requirements partial order reduction reduced LTL \� \� formula ϕ ϕ ϕ \� M r MDP M r M r (path event) quantitative analysis of M r M r M r against ϕ ϕ ϕ � worst-case maximal/minimal probability for ϕ ϕ ϕ analysis 61 / 124

  42. Example: extremal scheduler for MDP por-08-copy s s s β γ γ γ β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β α α α α α α γ γ γ β β β δ δ δ δ δ δ M original MDP M M α α α independent from β β β and γ γ γ 62 / 124

  43. Example: extremal scheduler for MDP por-08-copy s s s P 1 � P 2 P 1 � P 2 P 1 � P 2 β γ γ γ β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β γ γ γ β β β α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ δ δ δ δ δ δ M original MDP M M α x := random (0 , 1) action α α : x := random (0 , 1) x := random (0 , 1) α α α independent action δ δ δ : from β β and γ β γ γ IF x > 0 x > 0 x > 0 THEN y := 1 y := 1 y := 1 FI 63 / 124

  44. Example: extremal scheduler for MDP por-08-copy s s s P 1 � P 2 P 1 � P 2 P 1 � P 2 β γ γ γ β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β γ γ γ β β β α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ δ δ δ δ δ δ β γ P 1 scheduler chooses action β β or γ γ of process P 1 P 1 , P 2 depending on P 2 P 2 ’s internal probabilistic choice 64 / 124

  45. Outline overview-pomdp • Markov decision processes (MDP) and quantitative analysis against path events • partial order reduction for MDP • partially-oberservable MDP ← ← ← − − − • conclusions 65 / 124

  46. Monty-Hall problem pomdp-01 3 3 3 doors initially closed show candidate master 66 / 124

  47. Monty-Hall problem pomdp-01 3 3 3 doors no prize prize no prize initially closed show candidate master 67 / 124

  48. Monty-Hall problem pomdp-01 3 3 3 doors no prize prize no prize initially closed show candidate master 1. candidate chooses one of the doors 68 / 124

  49. Monty-Hall problem pomdp-01 3 3 3 doors no prize prize no prize initially closed show candidate master 1. candidate chooses one of the doors 2. show master opens a non-chosen, non-winning door 69 / 124

  50. Monty-Hall problem pomdp-01 3 3 3 doors no prize prize no prize initially closed show candidate master 1. candidate chooses one of the doors 2. show master opens a non-chosen, non-winning door 3. candidate has the choice: • keep the choice or • switch to the other (still closed) door 70 / 124

  51. Monty-Hall problem pomdp-01 3 3 3 doors 100 . 000 100 . 000 100 . 000 no prize no prize Euro initially closed show candidate master 1. candidate chooses one of the doors 2. show master opens a non-chosen, non-winning door 3. candidate has the choice: • keep the choice or • switch to the other (still closed) door 4. show master opens all doors 71 / 124

  52. Monty-Hall problem pomdp-01 3 3 3 doors 100 . 000 100 . 000 100 . 000 no prize no prize Euro initially closed show candidate master optimal strategy for the candidate: initial choice of the door: arbitrary revision of the initial choice (switch) 2 probability for getting the prize: 2 2 3 3 3 72 / 124

  53. MDP for the Monty-Hall problem pomdp-02 73 / 124

  54. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed show master’s actions candidate’s actions 2. opens a non-chosen, 1. choose one door non-winning door 3. keep or switch ? 4. opens all doors 74 / 124

  55. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed ❍❍❍❍❍❍❍❍❍❍❍❍ ❍❍❍❍❍❍❍❍❍❍❍❍ ❍❍❍❍❍❍❍❍❍❍❍❍ ✟ ✟ ✟ show master’s actions candidate’s actions ✟✟✟✟✟✟✟✟✟✟✟✟ ✟✟✟✟✟✟✟✟✟✟✟✟ ✟✟✟✟✟✟✟✟✟✟✟✟ 2. opens a non-chosen, 1. choose one door non-winning door 3. keep or switch ? 4. opens all doors ❍ ❍ ❍ start 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 keep switch keep switch keep switch won lost 75 / 124

  56. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed candidate’s actions Pr max (start , ♦ won ) , ♦ won ) , ♦ won ) = 1 , ♦ won ) , ♦ won ) Pr max (start , ♦ won ) Pr max (start , ♦ won ) , ♦ won ) = 1 , ♦ won ) = 1 1. choose one door 3. keep or switch ? optimal scheduler requires start complete information 1 1 1 1 1 1 on the states 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 keep switch switch won won lost 76 / 124

  57. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed candidate’s actions 1. choose one door cannot be distinguished 3. keep or switch ? by the candidate start 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 keep switch keep switch keep switch won won lost 77 / 124

  58. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed candidate’s actions observation-based strategy: 1. choose one door choose action switch in state door i 3. keep or switch ? i i start 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 switch switch switch won won lost 78 / 124

  59. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed candidate’s actions observation-based strategy: 1. choose one door choose action switch in state door i 3. keep or switch ? i i ♦ won : 2 2 2 probability for ♦ won ♦ won start 3 3 3 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 switch switch switch won won lost 79 / 124

  60. Partially-observable Markov decision process pomdp-05 A partially-observable MDP (POMDP for short) is an MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) together with an equivalence relation ∼ ∼ ∼ on S S S 80 / 124

  61. Partially-observable Markov decision process pomdp-05 A partially-observable MDP (POMDP for short) is an MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) together with an equivalence relation ∼ ∼ ∼ on S S S � � �    if s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 then s 1 , s 2 s 1 , s 2 s 1 , s 2 cannot be distinguished from outside (or by the scheduler) observables: equivalence classes of states 81 / 124

  62. Partially-observable Markov decision process pomdp-05 A partially-observable MDP (POMDP for short) is an MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) together with an equivalence relation ∼ ∼ ∼ on S S S � � �    if s 1 ∼ s 2 s 1 ∼ s 2 then s 1 , s 2 s 1 ∼ s 2 s 1 , s 2 s 1 , s 2 cannot be distinguished from outside (or by the scheduler) observables: equivalence classes of states observation-based scheduler: scheduler D : S + → Act D : S + → Act D : S + → Act such that for all π 1 , π 2 ∈ S + π 1 , π 2 ∈ S + : π 1 , π 2 ∈ S + D ( π 1 ) = D ( π 2 ) obs ( π 1 ) = obs ( π 2 ) D ( π 1 ) = D ( π 2 ) D ( π 1 ) = D ( π 2 ) if obs ( π 1 ) = obs ( π 2 ) obs ( π 1 ) = obs ( π 2 ) where obs ( s 0 s 1 . . . s n ) = [ s 0 ] [ s 1 ] . . . [ s n ] obs ( s 0 s 1 . . . s n ) = [ s 0 ] [ s 1 ] . . . [ s n ] obs ( s 0 s 1 . . . s n ) = [ s 0 ] [ s 1 ] . . . [ s n ] 82 / 124

  63. Extreme cases of POMDP pomdp-11 extreme cases of an POMDP: • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 iff s 1 = s 2 s 1 = s 2 s 1 = s 2 • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 for all s 1 s 1 s 1 , s 2 s 2 s 2 83 / 124

  64. Extreme cases of POMDP pomdp-11 extreme cases of an POMDP: • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 iff s 1 = s 2 s 1 = s 2 s 1 = s 2 ← ← ← − − − standard MDP • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 for all s 1 s 1 s 1 , s 2 s 2 s 2 84 / 124

  65. Probabilistic automata are special POMDP pomdp-11 extreme cases of an POMDP: • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 iff s 1 = s 2 s 1 = s 2 s 1 = s 2 ← ← ← − − − standard MDP • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 for all s 1 s 1 s 1 , s 2 s 2 ← ← ← − − − probabilistic automata s 2 note that for totally non-observable POMDP: observation-based function = infinite word = = = = = � � � � � � scheduler D : N → Act D : N → Act D : N → Act over Act Act Act 85 / 124

  66. Undecidability results for POMDP pomdp-11 extreme cases of an POMDP: • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 iff s 1 = s 2 s 1 = s 2 s 1 = s 2 ← ← ← − − − standard MDP • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 for all s 1 s 1 s 1 , s 2 s 2 ← ← ← − − − probabilistic automata s 2 note that for totally non-observable POMDP: observation-based function = infinite word = = = = = � � � � � � scheduler D : N → Act D : N → Act D : N → Act over Act Act Act undecidability results for PFA carry over to POMDP maximum probabilistic non-emptiness reachability problem problem for = = = � � � Pr obs “does Pr obs Pr obs PFA max ( ♦ F ) > p hold ? ” max ( ♦ F ) > p max ( ♦ F ) > p 86 / 124

  67. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. 87 / 124

  68. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. • There is no even no approximation algorithm for reachability objectives. [Paz’71], [Madani/Hanks/Condon’99], [Giro/d’Argenio’07] 88 / 124

  69. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. • There is no even no approximation algorithm for reachability objectives. • The model checking problem for POMDP and several qualitative properties is undecidable, e.g., repeated reachability with positive probability “does Pr obs Pr obs Pr obs max ( �♦ F ) max ( �♦ F ) max ( �♦ F ) > 0 > 0 > 0 hold ? ” = �♦ �♦ �♦ � = = “infinitely often” � � 89 / 124

  70. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. • There is no even no approximation algorithm for reachability objectives. • The model checking problem for POMDP and several qualitative properties is undecidable, e.g., repeated reachability with positive probability “does Pr obs Pr obs Pr obs max ( �♦ F ) max ( �♦ F ) max ( �♦ F ) > 0 > 0 > 0 hold ? ” Many interesting verification problems for distributed probabilistic multi-agent systems are undecidable. 90 / 124

  71. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. • There is no even no approximation algorithm for reachability objectives. • The model checking problem for POMDP and several qualitative properties is undecidable, e.g., repeated reachability with positive probability “does Pr obs Pr obs Pr obs max ( �♦ F ) max ( �♦ F ) max ( �♦ F ) > 0 > 0 > 0 hold ? ” ... already holds for totally non-observable POMDP � �� � probabilistic B¨ uchi automata 91 / 124

  72. Probabilistic B¨ uchi automaton (PBA) pba-01 P = ( Q , Σ , δ, µ, F ) P = ( Q , Σ , δ, µ, F ) P = ( Q , Σ , δ, µ, F ) • Q Q finite state space Q • Σ Σ Σ alphabet • δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] s.t. for all q ∈ Q q ∈ Q q ∈ Q , a ∈ Σ a ∈ Σ: a ∈ Σ � � � δ ( q , a , p ) ∈ { 0 , 1 } δ ( q , a , p ) ∈ { 0 , 1 } δ ( q , a , p ) ∈ { 0 , 1 } • initial distribution µ µ µ p ∈ Q p ∈ Q p ∈ Q • set of final states F ⊆ Q F ⊆ Q F ⊆ Q 92 / 124

  73. Probabilistic B¨ uchi automaton (PBA) pba-01 P = ( Q , Σ , δ, µ, F ) ← − POMDP where Σ = Act Σ = Act Σ = Act P = ( Q , Σ , δ, µ, F ) P = ( Q , Σ , δ, µ, F ) ← ← − − and ∼ ∼ � ∼ = = = Q × Q Q × Q Q × Q � � • Q Q Q finite state space • Σ Σ Σ alphabet • δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] s.t. for all q ∈ Q q ∈ Q q ∈ Q , a ∈ Σ a ∈ Σ a ∈ Σ: � � � δ ( q , a , p ) ∈ { 0 , 1 } δ ( q , a , p ) ∈ { 0 , 1 } δ ( q , a , p ) ∈ { 0 , 1 } • initial distribution µ µ µ p ∈ Q p ∈ Q p ∈ Q • set of final states F ⊆ Q F ⊆ Q F ⊆ Q 93 / 124

  74. Probabilistic B¨ uchi automaton (PBA) pba-01 P = ( Q , Σ , δ, µ, F ) ← − POMDP where Σ = Act Σ = Act Σ = Act P = ( Q , Σ , δ, µ, F ) P = ( Q , Σ , δ, µ, F ) ← ← − − and ∼ ∼ � ∼ = = = Q × Q Q × Q Q × Q � � • Q Q Q finite state space • Σ Σ Σ alphabet • δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] s.t. for all q ∈ Q q ∈ Q q ∈ Q , a ∈ Σ a ∈ Σ a ∈ Σ: � � � δ ( q , a , p ) ∈ { 0 , 1 } δ ( q , a , p ) ∈ { 0 , 1 } δ ( q , a , p ) ∈ { 0 , 1 } • initial distribution µ µ µ p ∈ Q p ∈ Q p ∈ Q • set of final states F ⊆ Q F ⊆ Q F ⊆ Q For each infinite word x ∈ Σ ω x ∈ Σ ω x ∈ Σ ω : Pr( x ) = Pr( x ) = Pr( x ) = probability for the accepting runs for x x x ↑ ↑ ↑ accepting run: visits F F F infinitely often 94 / 124

  75. Probabilistic B¨ uchi automaton (PBA) pba-01 P = ( Q , Σ , δ, µ, F ) ← − POMDP where Σ = Act Σ = Act Σ = Act P = ( Q , Σ , δ, µ, F ) P = ( Q , Σ , δ, µ, F ) ← ← − − and ∼ ∼ � ∼ = = = Q × Q Q × Q Q × Q � � • Q Q Q finite state space • Σ Σ Σ alphabet • δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] s.t. for all q ∈ Q q ∈ Q q ∈ Q , a ∈ Σ a ∈ Σ a ∈ Σ: � � � δ ( q , a , p ) ∈ { 0 , 1 } δ ( q , a , p ) ∈ { 0 , 1 } δ ( q , a , p ) ∈ { 0 , 1 } • initial distribution µ µ µ p ∈ Q p ∈ Q p ∈ Q • set of final states F ⊆ Q F ⊆ Q F ⊆ Q For each infinite word x ∈ Σ ω x ∈ Σ ω x ∈ Σ ω : Pr( x ) = Pr( x ) = Pr( x ) = probability for the accepting runs for x x x ↑ ↑ ↑ probability measure in the infinite Markov chain induced by x x x viewed as a scheduler 95 / 124

  76. Accepted language of a PBA pba-03 P = ( Q , Σ , δ, µ, F ) P = ( Q , Σ , δ, µ, F ) P = ( Q , Σ , δ, µ, F ) Σ • Q Q Q finite state space, Σ Σ alphabet δ : Q × Σ × Q → [0 , 1] . . . • δ : Q × Σ × Q → [0 , 1] δ : Q × Σ × Q → [0 , 1] s.t. . . . . . . µ • initial distribution µ µ • set of final states F ⊆ Q F ⊆ Q F ⊆ Q three types of accepted language: � � � � � � x ∈ Σ ω : Pr( x ) > 0 x ∈ Σ ω : Pr( x ) > 0 x ∈ Σ ω : Pr( x ) > 0 L > 0 ( P ) L > 0 ( P ) L > 0 ( P ) = = = probable semantics � � � � � � x ∈ Σ ω : Pr( x ) = 1 x ∈ Σ ω : Pr( x ) = 1 x ∈ Σ ω : Pr( x ) = 1 L =1 ( P ) L =1 ( P ) L =1 ( P ) = = = almost-sure sem. � � � � � � x ∈ Σ ω : Pr( x ) > λ x ∈ Σ ω : Pr( x ) > λ x ∈ Σ ω : Pr( x ) > λ L >λ ( P ) L >λ ( P ) L >λ ( P ) = = = threshold semantics where 0 < λ < 1 0 < λ < 1 0 < λ < 1 96 / 124

  77. Example for PBA pba-05 a , 1 1 1 a a 2 2 2 1 2 1 1 2 2 b b b 1 a a , 1 1 a a a a 2 2 2 initial state (probability 1) final state nonfinal state 97 / 124

  78. Example for PBA pba-05 accepted language: a , 1 1 1 a a 2 2 2 1 2 1 1 2 2 ( a + b ) ∗ a ω L > 0 ( P ) L > 0 ( P ) = L > 0 ( P ) = ( a + b ) ∗ a ω ( a + b ) ∗ a ω = b b b 1 a a , 1 1 a a a a 2 2 2 initial state (probability 1) final state nonfinal state 98 / 124

  79. Example for PBA pba-05 accepted language: a , 1 1 1 a a 2 2 2 1 2 1 1 2 2 ( a + b ) ∗ a ω L > 0 ( P ) L > 0 ( P ) L > 0 ( P ) = = ( a + b ) ∗ a ω ( a + b ) ∗ a ω = b b b 1 a a , 1 1 a a a a L =1 ( P ) = b ∗ a ω b ∗ a ω b ∗ a ω L =1 ( P ) L =1 ( P ) = = 2 2 2 initial state (probability 1) final state nonfinal state 99 / 124

  80. Example for PBA pba-05 accepted language: a , 1 1 1 a a 2 2 2 1 2 1 1 2 2 ( a + b ) ∗ a ω L > 0 ( P ) L > 0 ( P ) = L > 0 ( P ) = ( a + b ) ∗ a ω ( a + b ) ∗ a ω = b b b 1 a a , 1 1 a a a a L =1 ( P ) = b ∗ a ω b ∗ a ω b ∗ a ω L =1 ( P ) L =1 ( P ) = = 2 2 2 > 0 are strictly more expressive than DBA PBA > 0 > 0 Thus: 100 / 124

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend