quadrature on the positive real line with quasi and
play

Quadrature on the positive real line with quasi and pseudo - PowerPoint PPT Presentation

Gauss-type Quadrature ORF with a parameter Computation Quadrature on the positive real line with quasi and pseudo orthogonal rational functions Adhemar Bultheel (joint work with P. Gonz alez-Vera, E. Hendriksen, O. Nj astad) Department


  1. Gauss-type Quadrature ORF with a parameter Computation Quadrature on the positive real line with quasi and pseudo orthogonal rational functions Adhemar Bultheel (joint work with P. Gonz´ alez-Vera, E. Hendriksen, O. Nj˚ astad) Department of Computer Science K.U.Leuven SC2011 International Conference on Scientific Computing, S. Margherita di Pula, Sardinia, Italy October 10-14, 2011. Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  2. Gauss-type Quadrature ORF with a parameter Computation Happy birthday Claude and Sebastiano Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  3. Gauss-type Quadrature ORF with a parameter Computation Happy birthday Claude and Sebastiano Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  4. Gauss-type Quadrature ORF with a parameter Computation Survey Quadrature on the positive real line and OP ORF (incl. OP /OLP) Quasi and Pseudo versions Quadrature with QORF and PORF Differences and similarities Numerical examples Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  5. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Gauss-type quadrature � ∞ Consider integrals I µ ( f ) = 0 f ( x ) d µ ( x ), µ > 0. � ∞ Gauss-type QF: inner product � f , g � µ = 0 f ( x ) g ( x ) d µ ( x ) Construct OP { ϕ n } : ϕ n ⊥ L n − 1 = Π n − 1 Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating polynomial for f in these nodes ⇒ weights { λ k , n > 0 } n k =1 n � I µ ( f ) ≈ I µ n ( f ) = λ k , n f ( x k , n ) . k =1 Equality for f ∈ L n · L n − 1 = L 2 n − 1 = Π 2 n − 1 Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  6. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Gauss-type quadrature � ∞ Consider integrals I µ ( f ) = 0 f ( x ) d µ ( x ), µ > 0. � ∞ Gauss-type QF: inner product � f , g � µ = 0 f ( x ) g ( x ) d µ ( x ) Construct OP { ϕ n } : ϕ n ⊥ L n − 1 = Π n − 1 Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating polynomial for f in these nodes ⇒ weights { λ k , n > 0 } n k =1 n � I µ ( f ) ≈ I µ n ( f ) = λ k , n f ( x k , n ) . k =1 Equality for f ∈ L n · L n − 1 = L 2 n − 1 = Π 2 n − 1 Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  7. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Gauss-type quadrature � ∞ Consider integrals I µ ( f ) = 0 f ( x ) d µ ( x ), µ > 0. � ∞ Gauss-type QF: inner product � f , g � µ = 0 f ( x ) g ( x ) d µ ( x ) Construct OP { ϕ n } : ϕ n ⊥ L n − 1 = Π n − 1 Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating polynomial for f in these nodes ⇒ weights { λ k , n > 0 } n k =1 n � I µ ( f ) ≈ I µ n ( f ) = λ k , n f ( x k , n ) . k =1 Equality for f ∈ L n · L n − 1 = L 2 n − 1 = Π 2 n − 1 Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  8. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Gauss-type quadrature � ∞ Consider integrals I µ ( f ) = 0 f ( x ) d µ ( x ), µ > 0. � ∞ Gauss-type QF: inner product � f , g � µ = 0 f ( x ) g ( x ) d µ ( x ) Construct OP { ϕ n } : ϕ n ⊥ L n − 1 = Π n − 1 Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating polynomial for f in these nodes ⇒ weights { λ k , n > 0 } n k =1 n � I µ ( f ) ≈ I µ n ( f ) = λ k , n f ( x k , n ) . k =1 Equality for f ∈ L n · L n − 1 = L 2 n − 1 = Π 2 n − 1 Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  9. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Gauss-type quadrature � ∞ Consider integrals I µ ( f ) = 0 f ( x ) d µ ( x ), µ > 0. � ∞ Gauss-type QF: inner product � f , g � µ = 0 f ( x ) g ( x ) d µ ( x ) Construct OP { ϕ n } : ϕ n ⊥ L n − 1 = Π n − 1 Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating polynomial for f in these nodes ⇒ weights { λ k , n > 0 } n k =1 n � I µ ( f ) ≈ I µ n ( f ) = λ k , n f ( x k , n ) . k =1 Equality for f ∈ L n · L n − 1 = L 2 n − 1 = Π 2 n − 1 Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  10. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Gauss-type quadrature � ∞ Consider integrals I µ ( f ) = 0 f ( x ) d µ ( x ), µ > 0. � ∞ Gauss-type QF: inner product � f , g � µ = 0 f ( x ) g ( x ) d µ ( x ) Construct OP { ϕ n } : ϕ n ⊥ L n − 1 = Π n − 1 Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating polynomial for f in these nodes ⇒ weights { λ k , n > 0 } n k =1 n � I µ ( f ) ≈ I µ n ( f ) = λ k , n f ( x k , n ) . k =1 Equality for f ∈ L n · L n − 1 = L 2 n − 1 = Π 2 n − 1 Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  11. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Gauss-type quadrature � ∞ Consider integrals I µ ( f ) = 0 f ( x ) d µ ( x ), µ > 0. � ∞ Gauss-type QF: inner product � f , g � µ = 0 f ( x ) g ( x ) d µ ( x ) Construct OP { ϕ n } : ϕ n ⊥ L n − 1 = Π n − 1 Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating polynomial for f in these nodes ⇒ weights { λ k , n > 0 } n k =1 n � I µ ( f ) ≈ I µ n ( f ) = λ k , n f ( x k , n ) . k =1 Equality for f ∈ L n · L n − 1 = L 2 n − 1 = Π 2 n − 1 Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  12. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Orthogonal Rational Functions Introduce poles: define L n = { f n / d n : f n ∈ Π n } � ζ k − x , if − ∞ < ζ k ≤ 0 d n = r 1 r 2 · · · r n , r k ( x ) = 1 , if ζ k = −∞ Orthogonalize ϕ n ⊥ L n − 1 OP = all ζ ’s at −∞ OLP = all ζ ’s in { 0 , −∞} Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating RF for f in zeros ϕ n ⇒ I µ ( f ) ≈ I µ n ( f ) = � n k =1 λ k , n f ( x k , n ) (equality for f ∈ L n · L n − 1 � = ? L 2 n − 1 ) Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  13. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Orthogonal Rational Functions Introduce poles: define L n = { f n / d n : f n ∈ Π n } � ζ k − x , if − ∞ < ζ k ≤ 0 d n = r 1 r 2 · · · r n , r k ( x ) = 1 , if ζ k = −∞ Orthogonalize ϕ n ⊥ L n − 1 OP = all ζ ’s at −∞ OLP = all ζ ’s in { 0 , −∞} Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating RF for f in zeros ϕ n ⇒ I µ ( f ) ≈ I µ n ( f ) = � n k =1 λ k , n f ( x k , n ) (equality for f ∈ L n · L n − 1 � = ? L 2 n − 1 ) Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  14. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Orthogonal Rational Functions Introduce poles: define L n = { f n / d n : f n ∈ Π n } � ζ k − x , if − ∞ < ζ k ≤ 0 d n = r 1 r 2 · · · r n , r k ( x ) = 1 , if ζ k = −∞ Orthogonalize ϕ n ⊥ L n − 1 OP = all ζ ’s at −∞ OLP = all ζ ’s in { 0 , −∞} Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating RF for f in zeros ϕ n ⇒ I µ ( f ) ≈ I µ n ( f ) = � n k =1 λ k , n f ( x k , n ) (equality for f ∈ L n · L n − 1 � = ? L 2 n − 1 ) Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  15. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Orthogonal Rational Functions Introduce poles: define L n = { f n / d n : f n ∈ Π n } � ζ k − x , if − ∞ < ζ k ≤ 0 d n = r 1 r 2 · · · r n , r k ( x ) = 1 , if ζ k = −∞ Orthogonalize ϕ n ⊥ L n − 1 OP = all ζ ’s at −∞ OLP = all ζ ’s in { 0 , −∞} Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating RF for f in zeros ϕ n ⇒ I µ ( f ) ≈ I µ n ( f ) = � n k =1 λ k , n f ( x k , n ) (equality for f ∈ L n · L n − 1 � = ? L 2 n − 1 ) Adhemar Bultheel Quasi and pseudo ORF for QF on R +

  16. Gauss-type Quadrature Orthogonal polynomials ORF with a parameter Orthogonal Rational Functions (ORF) Computation Orthogonal Rational Functions Introduce poles: define L n = { f n / d n : f n ∈ Π n } � ζ k − x , if − ∞ < ζ k ≤ 0 d n = r 1 r 2 · · · r n , r k ( x ) = 1 , if ζ k = −∞ Orthogonalize ϕ n ⊥ L n − 1 OP = all ζ ’s at −∞ OLP = all ζ ’s in { 0 , −∞} Zeros ϕ n : { x k , n } n k =1 ⊂ R + ⇒ nodes Interpolating RF for f in zeros ϕ n ⇒ I µ ( f ) ≈ I µ n ( f ) = � n k =1 λ k , n f ( x k , n ) (equality for f ∈ L n · L n − 1 � = ? L 2 n − 1 ) Adhemar Bultheel Quasi and pseudo ORF for QF on R +

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend