public key encryption

Public-Key Encryption: The Auxiliary-Input Setting Zvika Brakerski - PowerPoint PPT Presentation

Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting Zvika Brakerski Gil Segev Microsoft Research Weizmann Institute Silicon Valley Probabilistic Encryption Enc Semantic Security [GM82]: No


  1. Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting Zvika Brakerski Gil Segev Microsoft Research Weizmann Institute Silicon Valley

  2. Probabilistic Encryption Enc ๐‘ž๐‘™ ๐‘› Semantic Security [GM82]: No adversary can learn any meaningful information on ๐‘› Encryption algorithm must be randomized 2

  3. Deterministic Encryption Efficiency: short ciphertexts ๏ฎ Each ๐‘ž๐‘™ may even define a permutation Functionality: searchable encryption ๏ฎ Each ๐‘ž๐‘™ defines a one-to-one mapping ๏ฎ Easy to check whether ๐‘‘ encrypts ๐‘› relative to ๐‘ž๐‘™ 3

  4. What About Security? Inherent limitation: ๏ฎ Each ๐‘ž๐‘™ defines a one-to-one mapping ๏ฎ Easy to check whether ๐‘‘ encrypts ๐‘› relative to ๐‘ž๐‘™ Security for high-entropy messages [BBO07] ๏ฎ Inspired by [RW02, DS05] in the symmetric-key setting ๏ฎ Exciting line of research [BFO08, BFOR08, BBNRSSY09 , Oโ€™N 10 ,โ€ฆ] ๏ฎ Meaningful for various applications (e.g., key encapsulation) Enc ๐‘ž๐‘™ ๐‘™๐‘“๐‘ง , AES ๐‘™๐‘“๐‘ง 0 , AES ๐‘™๐‘“๐‘ง 1 , โ€ฆ 4

  5. Notion of Security ([BBO07] simplified) ๐’ ๐‘ž๐‘™ Enc ๐‘ž๐‘™ ๐‘› High-entropy message source โ„ณ ๐’ฏ 5

  6. The Auxiliary-Input Setting Enc ๐‘ž๐‘™ ๐‘™๐‘“๐‘ง , AES ๐‘™๐‘“๐‘ง 0 , AES ๐‘™๐‘“๐‘ง 1 , โ€ฆ Encryption as a building block of a larger system ๏ฎ Additional information is available ๏ฎ Does ๐‘™๐‘“๐‘ง have any entropy given (AES ๐‘™๐‘“๐‘ง 0 , AES ๐‘™๐‘“๐‘ง 1 , โ€ฆ ) ? ๏ฎ No security guarantees from current models and schemes (noticed already by [DS05, BBO07]) 6

  7. This Talk: Better Security Model ๏ฎ Deterministic encryption in the auxiliary-input setting ๏ฎ Hard-to-invert auxiliary inputs ๏ฎ Generalizes the high-entropy setting Constructions ๏ฎ Security w.r.t all auxiliary inputs that are sub-exponentially hard ๏ฎ Based on standard hardness assumptions ๏ฎ ๐‘’ -Linear for any ๐‘’ โ‰ฅ 1 (Decisional Diffie- Hellman,โ€ฆ) ๏ฎ Subgroup indistinguishability [BG10] ( Quadratic Residuosity, Composite Residuosity ,โ€ฆ) 7

  8. Outline ๏ฎ Hard-to-invert auxiliary inputs ๏ฎ Security in the auxiliary-input setting ๏ฎ Construction based on ๐’† -Linear 8

  9. Hard-to-Invert Auxiliary Inputs Definition A function ๐‘” is ๐œ— -hard-to-invert relative to ๐’ด if for any efficient algorithm ๐ต it holds that ๐‘ฆโ†๐’ด ๐ต ๐‘” ๐‘ฆ Pr = ๐‘ฆ โ‰ค ๐œ— ๐‘” ๐‘™๐‘“๐‘ง = AES ๐‘™๐‘“๐‘ง 0 , AES ๐‘™๐‘“๐‘ง 1 , โ€ฆ ๏ฎ ๐ต is required to output the exact same ๐‘ฆ (and not any ๐‘ฆโ€ฒ โˆˆ ๐‘” โˆ’1 ๐‘” ๐‘ฆ as with one-wayness) ๏ฎ The source of hardness may be any combination of: ๏ฎ Information-theoretic hardness ( ๐‘” has many collisions) ๏ฎ Computational hardness ( ๐‘” is injective) 9

  10. Our Notion of Security (simplified) ๐’ ๐‘ž๐‘™ Enc ๐‘ž๐‘™ ๐‘› ๐‘” ๐‘› ๐‘” is hard-to-invert relative to โ„ณ ๐’ฏ ๐‘” ๐‘› 10

  11. Construction Based on ๐‘’ -Linear ๏ฎ Based on the lossy trapdoor function of [FGKRS10] ๏ฎ ๐”ฟ - group of order ๐‘ž generated by ๐‘• ๐‘• ๐ต ๐‘—๐‘˜ = ๐‘• ๐‘ ๐‘—๐‘˜ ๐‘œร—๐‘œ ๏ฎ Sample ๐ต โ† โ„ค ๐‘ž Key generation ๏ฎ Output ๐‘ก๐‘™ = ๐ต โˆ’1 and ๐‘ž๐‘™ = ๐‘• ๐ต โˆˆ ๐”ฟ ๐‘œร—๐‘œ ๏ฎ Given ๐‘› โˆˆ 0,1 ๐‘œ output ๐‘• ๐ต๐‘› โˆˆ ๐”ฟ ๐‘œ Encryption ๐‘› ๐‘˜ ๐‘— = ๐‘• ๐‘ ๐‘—๐‘˜ ๐‘› ๐‘˜ ๐‘• ๐ต๐‘› = ๐‘• ๐ต ๐‘˜ ๏ฎ Given ๐‘• ๐‘ค โˆˆ ๐”ฟ ๐‘œ compute ๐‘• ๐‘› = ๐‘• ๐ต โˆ’1 ๐‘ค โˆˆ ๐”ฟ ๐‘œ ๐‘—๐‘˜ Decryption ๐‘˜ ๏ฎ Output ๐‘› โˆˆ 0,1 ๐‘œ 11

  12. Proof of Security ๐‘  ๐›ฝ 2 ๐‘  ๐’ ๐‘• ๐ต ๐‘ž๐‘™ ๐ถ โ‹ฎ ๐›ฝ ๐‘œ ๐‘  ๐›พ ๐‘  , ๐‘› ๐›ฝ 2 ๐›พ ๐›ฝ 2 ๐‘  , ๐‘› ๐‘• ๐ต ๐‘› Enc ๐‘ž๐‘™ ๐‘› ๐ถ ๐‘› โ‹ฎ โ‹ฎ ๐›ฝ ๐‘œ ๐›พ ๐›ฝ ๐‘œ ๐‘  , ๐‘› ๐‘” ๐‘› Independent of ๐‘› ๏ฎ [BHHO08,NS09]: ๐‘’ -Linear โ‡’ ๐‘• ๐ต โ‰ˆ ๐‘‘ ๐‘• ๐ถ where ๐‘ ๐‘๐‘œ๐‘™ ๐ถ = ๐‘’ ๏ฎ [GL89,DGKPV10]: ๐‘” is ๐œ— -hard-to-invert relative to โ„ณ โ‡’ ๐‘  , ๐‘  , ๐‘› is pseudorandom 12

  13. Additional Features of Our Schemes Security for multiple users & related messages ๏ฎ Any number of users, linearly-related messages ๏ฎ Without requiring sub-exponential hardness Enc ๐‘ž๐‘™ 1 ๐‘› 1 , โ€ฆ , Enc ๐‘ž๐‘™ ๐‘œ ๐‘› ๐‘œ Homomorphic properties ๏ฎ Additions and one multiplication ๐‘• ๐ต๐‘› 1 โ‹… ๐‘• ๐ต๐‘› 2 = ๐‘• ๐ต ๐‘› 1 +๐‘› 2 ๐‘“ ๐‘• ๐ต๐‘› 1 , ๐‘• ๐ต๐‘› 2 ๐‘ˆ ๐‘ˆ ๐ต ๐‘ˆ = ๐‘“ ๐‘•, ๐‘• ๐ต๐‘› 1 ๐‘› 2 13

  14. Conclusions and Open Problems ๏ฎ Deterministic encryption in the auxiliary-input setting ๏ฎ Meaningful security for hard-to-invert auxiliary inputs Open problems ๏ฎ Eliminating sub-exponential hardness requirement ๏ฎ Security beyond linearly-related messages ๏ฎ Dealing with ๐‘ž๐‘™ -dependent messages and auxiliary inputs Thank you! 14

Recommend


More recommend