Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting Zvika Brakerski Gil Segev Microsoft Research Weizmann Institute Silicon Valley
Probabilistic Encryption Enc ๐๐ ๐ Semantic Security [GM82]: No adversary can learn any meaningful information on ๐ Encryption algorithm must be randomized 2
Deterministic Encryption Efficiency: short ciphertexts ๏ฎ Each ๐๐ may even define a permutation Functionality: searchable encryption ๏ฎ Each ๐๐ defines a one-to-one mapping ๏ฎ Easy to check whether ๐ encrypts ๐ relative to ๐๐ 3
What About Security? Inherent limitation: ๏ฎ Each ๐๐ defines a one-to-one mapping ๏ฎ Easy to check whether ๐ encrypts ๐ relative to ๐๐ Security for high-entropy messages [BBO07] ๏ฎ Inspired by [RW02, DS05] in the symmetric-key setting ๏ฎ Exciting line of research [BFO08, BFOR08, BBNRSSY09 , OโN 10 ,โฆ] ๏ฎ Meaningful for various applications (e.g., key encapsulation) Enc ๐๐ ๐๐๐ง , AES ๐๐๐ง 0 , AES ๐๐๐ง 1 , โฆ 4
Notion of Security ([BBO07] simplified) ๐ ๐๐ Enc ๐๐ ๐ High-entropy message source โณ ๐ฏ 5
The Auxiliary-Input Setting Enc ๐๐ ๐๐๐ง , AES ๐๐๐ง 0 , AES ๐๐๐ง 1 , โฆ Encryption as a building block of a larger system ๏ฎ Additional information is available ๏ฎ Does ๐๐๐ง have any entropy given (AES ๐๐๐ง 0 , AES ๐๐๐ง 1 , โฆ ) ? ๏ฎ No security guarantees from current models and schemes (noticed already by [DS05, BBO07]) 6
This Talk: Better Security Model ๏ฎ Deterministic encryption in the auxiliary-input setting ๏ฎ Hard-to-invert auxiliary inputs ๏ฎ Generalizes the high-entropy setting Constructions ๏ฎ Security w.r.t all auxiliary inputs that are sub-exponentially hard ๏ฎ Based on standard hardness assumptions ๏ฎ ๐ -Linear for any ๐ โฅ 1 (Decisional Diffie- Hellman,โฆ) ๏ฎ Subgroup indistinguishability [BG10] ( Quadratic Residuosity, Composite Residuosity ,โฆ) 7
Outline ๏ฎ Hard-to-invert auxiliary inputs ๏ฎ Security in the auxiliary-input setting ๏ฎ Construction based on ๐ -Linear 8
Hard-to-Invert Auxiliary Inputs Definition A function ๐ is ๐ -hard-to-invert relative to ๐ด if for any efficient algorithm ๐ต it holds that ๐ฆโ๐ด ๐ต ๐ ๐ฆ Pr = ๐ฆ โค ๐ ๐ ๐๐๐ง = AES ๐๐๐ง 0 , AES ๐๐๐ง 1 , โฆ ๏ฎ ๐ต is required to output the exact same ๐ฆ (and not any ๐ฆโฒ โ ๐ โ1 ๐ ๐ฆ as with one-wayness) ๏ฎ The source of hardness may be any combination of: ๏ฎ Information-theoretic hardness ( ๐ has many collisions) ๏ฎ Computational hardness ( ๐ is injective) 9
Our Notion of Security (simplified) ๐ ๐๐ Enc ๐๐ ๐ ๐ ๐ ๐ is hard-to-invert relative to โณ ๐ฏ ๐ ๐ 10
Construction Based on ๐ -Linear ๏ฎ Based on the lossy trapdoor function of [FGKRS10] ๏ฎ ๐ฟ - group of order ๐ generated by ๐ ๐ ๐ต ๐๐ = ๐ ๐ ๐๐ ๐ร๐ ๏ฎ Sample ๐ต โ โค ๐ Key generation ๏ฎ Output ๐ก๐ = ๐ต โ1 and ๐๐ = ๐ ๐ต โ ๐ฟ ๐ร๐ ๏ฎ Given ๐ โ 0,1 ๐ output ๐ ๐ต๐ โ ๐ฟ ๐ Encryption ๐ ๐ ๐ = ๐ ๐ ๐๐ ๐ ๐ ๐ ๐ต๐ = ๐ ๐ต ๐ ๏ฎ Given ๐ ๐ค โ ๐ฟ ๐ compute ๐ ๐ = ๐ ๐ต โ1 ๐ค โ ๐ฟ ๐ ๐๐ Decryption ๐ ๏ฎ Output ๐ โ 0,1 ๐ 11
Proof of Security ๐ ๐ฝ 2 ๐ ๐ ๐ ๐ต ๐๐ ๐ถ โฎ ๐ฝ ๐ ๐ ๐พ ๐ , ๐ ๐ฝ 2 ๐พ ๐ฝ 2 ๐ , ๐ ๐ ๐ต ๐ Enc ๐๐ ๐ ๐ถ ๐ โฎ โฎ ๐ฝ ๐ ๐พ ๐ฝ ๐ ๐ , ๐ ๐ ๐ Independent of ๐ ๏ฎ [BHHO08,NS09]: ๐ -Linear โ ๐ ๐ต โ ๐ ๐ ๐ถ where ๐ ๐๐๐ ๐ถ = ๐ ๏ฎ [GL89,DGKPV10]: ๐ is ๐ -hard-to-invert relative to โณ โ ๐ , ๐ , ๐ is pseudorandom 12
Additional Features of Our Schemes Security for multiple users & related messages ๏ฎ Any number of users, linearly-related messages ๏ฎ Without requiring sub-exponential hardness Enc ๐๐ 1 ๐ 1 , โฆ , Enc ๐๐ ๐ ๐ ๐ Homomorphic properties ๏ฎ Additions and one multiplication ๐ ๐ต๐ 1 โ ๐ ๐ต๐ 2 = ๐ ๐ต ๐ 1 +๐ 2 ๐ ๐ ๐ต๐ 1 , ๐ ๐ต๐ 2 ๐ ๐ ๐ต ๐ = ๐ ๐, ๐ ๐ต๐ 1 ๐ 2 13
Conclusions and Open Problems ๏ฎ Deterministic encryption in the auxiliary-input setting ๏ฎ Meaningful security for hard-to-invert auxiliary inputs Open problems ๏ฎ Eliminating sub-exponential hardness requirement ๏ฎ Security beyond linearly-related messages ๏ฎ Dealing with ๐๐ -dependent messages and auxiliary inputs Thank you! 14
Recommend
More recommend