psp
play

PSP MOSFET model R. van Langevelde, G.D.J. Smit , A.J. Scholten and - PowerPoint PPT Presentation

Introduction to the PSP MOSFET model R. van Langevelde, G.D.J. Smit , A.J. Scholten and D.B.M. Klaassen G. Gildenblat, X. Li, H. Wang and W. Wu MOS-AK, Grenoble, September 16 th , 2005 outline introduction & history introduction


  1. Introduction to the PSP MOSFET model R. van Langevelde, G.D.J. Smit , A.J. Scholten and D.B.M. Klaassen G. Gildenblat, X. Li, H. Wang and W. Wu MOS-AK, Grenoble, September 16 th , 2005

  2. outline • introduction & history • introduction & history • model structure and contents • model structure and contents • physical background • physical background • parameter extraction • parameter extraction • conclusions • conclusions PSP, MOS-AK, Grenoble, September 16 th , 2005 2/50

  3. introduction: merger SP and MM11 MOS Model 11 SP (Philips) (Penn State) PSP PSP, MOS-AK, Grenoble, September 16 th , 2005 3/50

  4. introduction: motivation Why PSP? • 2004: CMC calls for next generation industrial standard model for compact CMOS modeling • SP (Penn State) and MOS Model 11 (Philips Research) were both worthy candidates • enhance collaboration rather than competition • make an even better model PSP, MOS-AK, Grenoble, September 16 th , 2005 4/50

  5. introduction: similarities MM11 and SP MOS Model 11 (MM11) and SP are both compact MOSFET models that: • are surface-potential-based • are symmetrical w.r.t. drain and source • make a distinction between local (miniset) and global (maxiset) model parameters • use similar basic equations • are based on mid-point linearization of charges PSP � Combines and enhances the best features of MM11 and SP PSP, MOS-AK, Grenoble, September 16 th , 2005 5/50

  6. introduction: CMC requirements requirements for new standard model: • useful for 90, 65 and 45nm CMOS • model dc-currents + derivatives – distortion – symmetry • model charges + 1 st -order derivative – including accumulation region for varactors • model noise • model source/drain junctions • model non-quasi-static effects • model gate/substrate resistances PSP, MOS-AK, Grenoble, September 16 th , 2005 6/50

  7. introduction: CMC selection procedure selection procedure for next generation model: 07/2004 candidate models: model from type solution • BSIM5 UC Berkeley Q inv iterative • EKV EPFL Q inv iterative • HiSIM ψ s Hiroshima Univ. iterative • PSP ψ s PSU/Philips explicit 10/2005 final selection PSP, MOS-AK, Grenoble, September 16 th , 2005 7/50

  8. outline • introduction & history • model structure and contents • physical background • parameter extraction • conclusions PSP, MOS-AK, Grenoble, September 16 th , 2005 8/50

  9. general: structure of PSP global par set geometry scaling W, L stress scaling SA , SB local parameter set T temperature scaling   currents V SB   V   charges model equations GS   noise V  local model  DS PSP, MOS-AK, Grenoble, September 16 th , 2005 9/50

  10. general: physical effects included • non-uniform lateral doping • non-uniform vertical doping • field-dependent mobility • velocity saturation • conductance effects (CLM, DIBL, etc.) • series-resistance • short-channel effects (incl. RSCE) • narrow-width effects • gate poly-depletion • quantum-mechanical corrections PSP, MOS-AK, Grenoble, September 16 th , 2005 10/50

  11. general: physical effects included (ii) • overlap capacitances ( ψ s -based) • impact ionization current • gate leakage current • gate-induced drain/source leakage (GIDL, GISL) • junction diode I - V and C - V (forward and reverse) • diode reverse breakdown • noise (1/f, thermal, induced gate and shot noise) • non-quasi-static effects • gate and bulk resistances • STI stress effect PSP, MOS-AK, Grenoble, September 16 th , 2005 11/50

  12. general: PSP’s unique features • unique description of CLM in halo-doped devices – reproduces details in long channel g ds • unique gate current model • unique noise model – most complete and robust – correctly including velocity-saturation • unique NQS model – verified against channel segmentation • unique junction diode model (JUNCAP2) unavailable outside PSP context; verified against device simulations and several modern CMOS processes PSP, MOS-AK, Grenoble, September 16 th , 2005 12/50

  13. outline • introduction & history • model structure and contents • physical background • parameter extraction • conclusions PSP, MOS-AK, Grenoble, September 16 th , 2005 13/50

  14. outline: physical background • DC model • DC model • AC model • AC model • noise model • noise model • non quasi static model • non quasi static model • junction diode model • junction diode model PSP, MOS-AK, Grenoble, September 16 th , 2005 14/50

  15. physics: DC: surface-potential-based PSP is surface-potential ( ψ s ) based 10 -4 I DS = I drift + I diff ψ s -based model: 10 -5 I diff 10 -6 single equation for (A) whole operation range : 10 -7 I DS 10 -8 I drift = f( V GB , ψ s0 , ψ sL ) V SB = 0 V 10 -9 I diff = g( V GB , ψ s0 , ψ sL ) 10 -10 V DS = 1 V I drift 10 -11 0 1 2 I DS = I drift + I diff V GS (V) PSP, MOS-AK, Grenoble, September 16 th , 2005 15/50

  16. physics: DC: ψ s - calculation − ϕ −  ψ   ψ  2 V   − − ψ V V B s s −     ϕ ϕ ϕ   = ψ + ϕ ⋅ ⋅ − + ϕ ⋅ − GB FB s e e 1 e 1 T T T       s T T γ       1.2 ψ s obtained from explicit analytical approximation, 0.8 accurate within 1nV under ψ s (V) all relevant conditions 0.4 [R. Rios et al ., IEDM2004]: 0 approximation of ψ s V = 0 V becomes inaccurate for -0.4 high positive back bias -1 0 1 2 V GB - V FB (V) PSP, MOS-AK, Grenoble, September 16 th , 2005 16/50

  17. physics: DC: ψ s –based model ψ s -calculation: d escription of ideal long-channel MOSFET in ‘real’ device: • mobility reduction • velocity saturation • short-channel effects (DIBL, non-ideal slope) • gate current PSP, MOS-AK, Grenoble, September 16 th , 2005 17/50

  18. physics: DC: mobility reduction mobility reduction due to phonon, surface- roughness, and Coulomb scattering + η Q ⋅ Q = − E b inv PSP: eff ε Si • PH ( ) THEMU ⋅ MUE E • SR eff µ 1 − µ ∝ E 3 ph eff • CS • parameters: + − 2 Q Q µ ∝ E µ ∝ BETN, MUE, THEMU, inv b sr eff C Q b CS, XCOR E eff PSP, MOS-AK, Grenoble, September 16 th , 2005 18/50

  19. physics: DC: mobility reduction (ii) g m versus V GS (100µm/10µm n-MOS, V DS =30mV) V SB =0V 100 100 (µA/V) (µA/V) µ A/V) µ A/V) V SB =1.2V 50 50 m ( m ( CS CS g m g g m g switched switched on off 0 0 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 V GS (V) V GS (V) V GS (V) V GS (V) model measurement PSP, MOS-AK, Grenoble, September 16 th , 2005 19/50

  20. physics: DC: velocity saturation in PSP: µ ⋅ E = || v • integration of v 2 µ   + ⋅ 1  E  v ||   v = along channel v sat sat W ∫ = − ⋅ ⋅ ⋅ I Q v d x D inv L v µ ⋅ E = || v µ v = µ · E || + ⋅ 1 E • parameters: v || sat THESAT, (THESATG, THESATB) E x PSP, MOS-AK, Grenoble, September 16 th , 2005 20/50

  21. physics: DC: velocity saturation (ii) I D vs V DS I D vs V GS V DS =1.2V V GS =1.2V 4 4 (mA) (mA) D (mA) D (mA) V GS =0.8V 0.6V 2 2 I I I D I D 50mV V GS =0.4V 0 0 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 V GS (V) V DS (V) V DS (V) V GS (V) 10/0.12 n-MOS measurement PSP PSP, MOS-AK, Grenoble, September 16 th , 2005 21/50

  22. physics: DC: velocity saturation (iii) g DSi (= ∂ i I D / ∂ V DS g mi (= ∂ i I D / ∂ V GS i ) vs V DS i ) vs V GS g m3 -1 g DS3 10 -1 10 (A/V i ) (A/V i ) DS i (A/V i ) i (A/V i ) -2 10 g DS2 -2 10 -3 10 g m1 m g DSi g DS1 g mi g g -4 10 -3 10 V GS =1.2V V DS =1.2V g m2 -5 10 0.0 0.3 0.6 0.9 0.0 0.4 0.8 1.2 V DS (V) V GS (V) V DS (V) V GS (V) 10/0.12 NMOS measurement PSP PSP, MOS-AK, Grenoble, September 16 th , 2005 22/50

  23. physics: DC: short-channel effects non-ideal subthreshold slope and DIBL (due to 2D-effects): Poisson equation: (in subthreshold) ⋅ ∂ ∂ ψ ψ ∂ ∂ ∂ ∂ ψ ψ ψ ψ ⋅ ⋅ ρ ∂ ψ 2 2 2 2 2 2 2 q q q N N N + + = ≈ ≈ ≈ − − n + n + eff A A ++++++ ++++++ +++ +++ ∂ ∂ ∂ ∂ ∂ ∂ ε ε ε ε ∂ 2 2 2 2 2 2 2 x x y y y y x - - -- - - -- - - -- - - -- - - n + n + - - - - - - x - - - - - - Si Si Si Si n + n + x - - - - - - - - - - - - - - - -- - - - - -- - - - - - lateral gradient factor f : - - - - - - - - - - - - - - - - - - - - ( ) y y - - - - - - = ⋅ N N f V , V , V p p eff A GS DS SB PSP-parameters: F0, AF, BF, CF, (CFB) PSP, MOS-AK, Grenoble, September 16 th , 2005 23/50

  24. physics: DC: channel length modulation in PSP: uniformly doped device pocket implanted device • effect of pockets on V G V G conductance included V D • both below and above N sub V D N pck N sub N pck threshold • parameters: ALP1, ALP2 electron potential V DS PSP, MOS-AK, Grenoble, September 16 th , 2005 24/50

  25. physics: DC: CLM (ii) I D - V DS and g DS - V DS for V SB =0V and T =25°C 0.20 0.15 -4 10 (A/V) (mA) DS (A/V) D (mA) 0.10 -5 10 I g DS g I D 0.05 -6 10 -7 0.00 10 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 V DS (V) V DS (V) V DS (V) V DS (V) 10µm/10µm NMOS (90nm process) PSP, MOS-AK, Grenoble, September 16 th , 2005 25/50

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend